2 DESCRIPTION OF THE PROPOSED ACTION AND ALTERNATIVES

This section provides necessary background information and a description of the Proposed Action and alternatives considered by the VA and eliminated from further detailed analysis for this SEA. NEPA and VA regulations for NEPA implementation require all reasonable alternatives to be rigorously explored and objectively evaluated. The VA’s screening criteria to determine the suitability of new cemetery development proposals are described in Table 2-1.

Table 2-1. Screening Criteria for New Veterans Affairs National Cemetery Development

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supportive Services</td>
<td>Must not adversely impact veteran support services</td>
</tr>
<tr>
<td>Operational</td>
<td>Must provide the necessary area for construction, maintenance access,</td>
</tr>
</tbody>
</table>
<pre><code> | safe conditions, and facility operations |
</code></pre>
<p>| Land Use | Must be consistent with previous/current or identified land use |
| Environmental | Must minimize impact on existing environmental resources including |
| socioeconomic, biological, air, geologic, and hydrologic resources |
| Objectives | Meets all project goals described in Section 1.5 of this EA |</p>

2.1 Proposed Action

Under the Proposed Action, the VA would develop a National Cemetery on the Drennan Road, El Paso County, Colorado site in 21 phases. The initial phase, Phase 1, would encompass approximately 65 acres and is the focus of analysis in this SEA. In addition to preparing the overall site for subsequent development phases, Phase 1 would include the construction of the early turnover area, first gravesite areas, cemetery roads, entrance, administration and public information center (PIC) building, two committal shelters, two pump houses, honor guard building, and maintenance facility. Each subsequent phase of future cemetery development would add interment sites until the proposed cemetery could accommodate 196,900 total interment sites at full buildout. These future development phases would each be subject to environmental analyses pursuant to NEPA and VA requirements.

Phase 1 would include modification of the Franceville and tributary of Jimmy Camp Creek to potentially eliminate the 100-year floodplain on the site. In addition, grading contours would direct all stormwater flows on the site to a retention pond and avoid entering the wetland on the site. With anticipated drainage improvements, future development phases would include one road crossing over the Franceville floodway to access lands to the south of the floodplain. Some of the larger pieces of the Phase 1 development (e.g., the administration/PIC building, the memorial walkway, and the committal service shelters) are planned with the mountain views in mind. The plans for the site take advantage of the mountain views and arroyos on the site, and preserve existing trees adjacent to the arroyos in order to create a peaceful, quiet area.

The cemetery site currently does not have any utilities—water, natural gas, electricity, telecommunications, or sanitary sewer. The master plan for the cemetery anticipates development to include septic tanks, wells, pump houses, electrical service, and a telecommunications conduit.
2.1.1 Site-Specific National Cemetery Components

2.1.1.1 Cemetery Elements

Based on current master planning data, the proposed National Cemetery would be developed in up to 21 phases. The first phase of initial development (Phase 1) includes approximately 65 acres (see Figure 2-1), and would be constructed in approximately one to three years and in two stages, depending upon the availability of federal funding. Each subsequent phase of cemetery development would occur in approximate 10-year intervals. Figure 2-2 shows the conceptual design for full site buildout.

Figure 2-1. Proposed Phase 1 Draft Development Plan
Figure 2-2. Full Buildout, Southern Colorado National Cemetery, Colorado
In general, the project phasing radiates outward from the administration/PIC facility, then extends south to the other side of the floodway in the future. An outer loop of gravel road, which may be used for construction activities, is provided for maintenance. This network may be extended in the future. Phase 1 development would include the construction of the early turnover area, first gravesite areas, cemetery roads, entrance, administration and PIC building, honor guard building, two committal service shelters, two pump houses, maintenance building, memorial wall and walkway, entrance area and signage, columbarium, and approximately 13,300 interment sites. Construction access to the Phase 1 area would be provided via Drennan Road. Construction of an early turnover burial area (Phase 1A) would be completed in a one-year period in order to allow for burials prior to completion of the permanent Phase 1 facilities in two to three years, depending upon federal funding availability. Phase 1 would provide all facilities necessary to maintain, operate, and provide interment sites for approximately 10 years.

Prior to construction and operation of future phases, a new and separate NEPA analysis would be performed to assess potential impacts and identify any warranted management and/or actions that would minimize impacts for each future phase. Each subsequent phase of future cemetery development would add interment sites until full buildout. Approximate numbers of burial sites at full buildout would include 67,500 double-depth pre-placed crypts; 49,500 columbarium niches; 63,000 in-ground cremation plots; 8,450 private vault plots; and 8,450 oversized crypts. Phase 1 is further divided into a Phase 1A and Phase 1B. Phase 1A, referred to in the master plan as the “early turnover area,” is designed to provide burial sections and temporary support facilities quickly, with usage potentially starting in 2017 (AES Group, Inc. 2015). Consideration has been given to noise and construction traffic while the rest of Phase 1 is being constructed. Construction traffic would be able to access the site at the maintenance facility and travel behind where burials occur. Roads developed as part of Phase 1A would be permanent roads.

Phase 1A would include the following:

- permanent burial sites
 - 2,000 double-depth pre-placed crypts
 - 3,000 in-ground cremains plots
 - 650 plots for private vaults
 - 650 oversized crypts
- entrance road
- flag pole
- cemetery identification sign
- four (4) temporary modular trailers to accommodate administration, public restroom, maintenance, and honor guard functions
- temporary committal service shelter
- temporary assembly area
- irrigation
- utilities
Phase 1B would include the features and buildings necessary to operate the permanent cemetery, and may be ready for use in 2019 (AES Group Inc. 2015). Phase 1B would include the following:

- administration/PIC building with public restrooms and electronic gravesite locator (4,400 gross square feet [gsf])
- maintenance complex (7,600 gsf)
- honor guard building (1,200 gsf)
- two (2) committal service shelters
- two (2) pump houses – one for irrigation water, one for domestic water
- main site entry gateway/fencing along highway access
- memorial walls and walkways
- entry boulevard
- administration/PIC building
- cortege staging area
- visitor and staff parking
- main loop road
- flag and public assembly area
- permanent burial sites
 - one (1) columbarium complex including 4,500 niches
 - 2,500 double-depth pre-placed crypts
- ossuary
- hybrid burial area
- service drives
- all utilities and infrastructure required to service the site

The roadway system that is constructed in Phase 1 would provide for approximately 30 years of burial (AES Group Inc. 2015).

2.1.1.2 Other Site-Specific Elements

Nighttime Lighting. Per Leadership in Energy and Environmental Design (LEED®) standards, exterior lighting would be limited in wattage and full cutoff to prevent any night-sky or neighbor light pollution. An outdoor lighting plan has not yet been documented on the site master plan.

Fencing. Site fencing along the highway access and around the perimeter for security are likely, but specific fence plans are not documented in the site master plan (location and fence type). The VA would prefer an ornamental fence on the north frontage of the cemetery site, and a barbed wire security fence on the remaining three sides (AES Group, Inc. 2015).

Use. Areas of the site that are not developed would be maintained by the VA. Low-intensity landscaping is planned for outlying areas that would experience infrequent or no public interaction in order to preserve the existing landscape and protect it from grading and vehicular traffic during new construction. Landscaping in the low-intensity landscape areas would aim to restore and reestablish short and medium-grass prairie species (AES Group, Inc. 2015).

Avoidance of Environmentally Sensitive Areas. Based on the analyses and findings of the Final PEA (VA 2012), and review of the design, the VA has designed the proposed National Cemetery to avoid on-site jurisdictional waters of the United States (WOTUS), including appropriate buffers around these areas to the greatest extent possible, as well as minimize any modification to the 100-year floodplain.
2.1.1.3 Proposed Use Levels

Upon completion of the Phase 1 development, the National Cemetery would typically be used every day throughout the year. Approximately 240 visitors could be expected on a daily basis. On weekdays, 23 staff would be present on-site. Up to 8 funeral processions per weekday (average 30 cars per procession), generating approximately 240 vehicle round-trips per day on a busy day would be anticipated. The cemetery would be closed to the public at night.

2.1.1.4 Stormwater Management

To accommodate known stormwater management issues at the site, the VA plans to design and construct four active (wet) stormwater retention ponds on the cemetery site. Two of these ponds would be constructed as part of Phase 1, and two areas would be considered future stormwater ponds. These ponds would contain aeration modules to maintain high water quality.

The cemetery master plan includes a stormwater strategy to prevent the discharge of any stormwater from the site for all flooding less than a 500-year flood event. Water would flow southwest across the site and be directed into an artificial channel adjacent to the Franceville Tributary (AES Group, Inc. 2015).

2.1.1.5 Floodplain Management

Two tributaries flow through the National Cemetery site: Corral Tributary, on the west, and Franceville Tributary, to the east (see Figure 3-2). Both have significant channel erosion and are in need of stabilization measures. The architectural and engineering contractor has developed initial plans for bank stabilization on Corral Creek affecting approximately 500 to 600 linear feet of the channel, which is slated to occur during a later phase of development. As mentioned above, bank stabilization is not expected to take place during Phase 1 activities but will be subject to NEPA environmental analysis if implemented during future phases (Day 2016b).

The proposed floodplain management measures are to channelize the Franceville Tributary to run within the existing floodway along the eastern boundary of the property and then west across the property following the current drainage to the Corral Tributary in the southwest corner of the cemetery site. This channelization would redefine the Franceville 100-year floodplain on the site. This floodplain realignment would make available another 40 to 50 acres on the site for future development. All increased flows from stormwater on the cemetery site would be designed to flow to stormwater treatment facilities, with specific siting depending on the final cemetery layout. The attenuated flows from the treatment facilities would be directed into existing drainage routes (AES Group, Inc. 2015).

In the master planning process, the proposed floodway channel was modeled and run using the 500-year flows. The VA is also in the process of obtaining survey data for a Conditional Letter of Map Revision (CLOMR) from the Federal Emergency Management Agency (FEMA) (AES Group, Inc. 2015).

2.1.1.6 Utility Requirements (Electricity, Natural Gas, Telecommunications, Sewer, and Potable and Irrigation Water Supply)

Operation of the proposed National Cemetery would require consumption of utilities from Widefield Water and Sanitation District (WWSD), Mountain View Electric Association (MVEA), Colorado Springs Utilities (CSU), and Century Link. The VA would continue to coordinate with local service providers to ensure that any increase in consumption would remain in accordance
with available local capacities. During preparation of the PEA, the VA contacted service providers about the availability of the respective utilities at the site. Conclusions in the PEA that electricity and telecommunications services would be available and suitable for the National Cemetery remain consistent (VA 2012). Sanitary septic sewerage, natural gas, and water (i.e., potable, irrigation, fire suppression) services are not available from local utility providers. The SEA analysis for these utilities is described as follows:

- **Sanitary Waste Disposal.** There is currently no sanitary sewer service in proximity to the site; therefore, each of the building facilities would be provided with an Individual Sewage Disposal System (ISDS). The ISDS would be sized for average usage based on the number of personnel on site. For major holidays, public bathrooms would be closed and portable toilets would be brought on site. The tanks and fields would be located in proximity to the building served. At some future date, sanitary sewer service is anticipated to be extended to the site as adjacent areas are developed. At that time, depending on location and height of the connection, the sewers may be connected to municipal service.

- **Natural Gas.** An existing gas service is located adjacent to the site on Bradley Road. However, a natural gas service line extension would be necessary to reach the cemetery site, estimated by CSU to cost $400,000 or more, which is cost prohibitive. If gas-powered heating, ventilation, and air condition (HVAC) and water heating equipment is desired, the installation and use of a propane tank would be explored. Gas service would be provided to the site by CSU.

- **Electricity.** No electrical facilities currently exist on the site, but electrical service would be provided to the site by MVEA.

- **Telecommunications.** Telecommunications services would be provided to the site by Century Link.

- **Potable Water, Irrigation Water, and Fire Suppression Water.** No domestic water service currently exists on the cemetery site. Domestic water would be provided by well, treated as necessary, and pumped to each facility. The WWSD would install the groundwater wells, treat the water, and distribute the water throughout the site.

Based on the design irrigation plan, the Phase 1 area includes 27.5 irrigated acres. The estimated watering needs for this area is approximately 186,500 gallons per day (GPD) at peak season and 35.8 million gallons (MG) annually. At the completion of Phases 1 through 3, approximately 36.4 acres would be irrigated, and the peak season daily water usage is estimated to be 246,800 GPD, with an annual water usage of 47.4 MG. (AES Group, Inc. 2015).

2.1.1.7 Sustainability Considerations

As part of the sustainability criteria for the project, the new VA National Cemetery in southern Colorado is required to demonstrate its performance through an approved, third-party, green building certification program. Therefore, the project would achieve LEED® Silver certification using the United States Green Building Council’s (USGBC) LEED® green building rating system. The Version 3 (LEED 2009 NC) rating system would be employed to achieve the LEED certification. Principals of the “Sustainable Sites Initiative” were considered throughout the design process and incorporated into the site design.

LEED® Silver Certification Strategy. The Phase 1 cemetery design readily complies with nearly all LEED® minimum project requirements, which makes the project eligible to pursue LEED® certification. Due to the physical distance between buildings on the site, multiple, individual LEED® site boundaries and certifications would be required for all proposed buildings to achieve
formal LEED® certification. The VA has decided to individually certify and register the administration/PIC and maintenance buildings through the LEED® certification process. The smaller and irregularly occupied honor guard building is not required for the LEED® certification, but sustainable principles and features would be integrated into its design and construction in accordance with Veterans Administration Sustainable Design Manual (May 2014) requirements.

Due to the project site's rural, green field location and floodplain, the LEED® projects are not eligible for many site infrastructure- and transportation-related points. Subsequently, the VA would need to maximize a variety of other credit opportunities. LEED® certification would require aggressive energy and water conservation strategies, both for the overall site and at each individual building. Potable well water conservation strategies are further handicapped by State of Colorado regulations that prohibit property owners from harvesting and reusing rain and stormwater. The VA plans to implement other sustainability strategies related to landscaping, plumbing fixtures, renewable energy systems, and lighting to enhance the sustainability of the Preferred Alternative.

In accordance with the VA’s sustainability principles and applicable requirements, the proposed facilities would be designed and constructed to comply with the following current and emerging Green Infrastructure/Low Impact Development requirements of federal proposed actions:

- **Executive Order (EO) 13693, Planning for Federal Sustainability in the Next Decade (March 25, 2015).** EO 13693 supersedes both EO 13423 of January 24, 2007, Strengthening Federal Environmental, Energy, and Transportation Management, as well as EO 13514 of October 5, 2009, Federal Leadership in Environmental, Energy, and Economic Performance. This EO expands on the energy reduction and environmental performance requirements for federal agencies identified in EO 13423, which required federal agencies to conduct their environmental, transportation, and energy-related activities, including new construction, in an environmentally, economically, and fiscally sound, integrated, continuously improving, efficient, and sustainable manner. It also expands on the requirements of EO 13514, which prioritized sustainability goals and greenhouse gas (GHG) emissions reductions among federal agencies.

- **Section 438 of the Energy Independence Security Act (EISA) (March 3, 2007).** The EISA requires that, for federal development and redevelopment projects, the proponent ensures that any federal facility with a proposed disturbance area exceeding 5,000 square feet maintain or restore the predevelopment hydrology of the property to the maximum extent technically feasible, with respect to temperature, rate, volume, and duration of flow.

- **Energy Policy Act (EPAct) of 2005 (August 8, 2005).** As part of the design process, the VA would specifically comply with the United States Environmental Protection Agency (USEPA) Technical Guidance on Implementing Stormwater Runoff Requirements for Federal Projects under Section 438 of the EISA (USEPA 2009).

2.1.2 Environmental Best Management Practices, Permits, and Approvals

Land improvement activities associated with implementation of the Proposed Action would include land clearing, excavation, soil stockpiling, grading, installing various site improvements, creating roads, creating stormwater detention ponds, irrigation ponds, diverting surface flows away from an existing tributary, and extending selected utilities to serve the National Cemetery.
Prior to constructing any component of the Proposed Action, the VA would obtain all required federal and state permits and approvals necessary to comply with applicable laws. Applicable environmental permits required, identified in part through the Final PEA (VA 2012), are described in Section 11. Furthermore, the VA would attempt to comply, to the best extent possible, with the guidelines of applicable local permits. In addition, the VA would implement the BMPs listed in Table 1-1 as part of the Proposed Action. These include measures that serve to proactively minimize environmental effects as identified through the PEA and this SEA process.

2.2 Alternatives Analysis

NEPA, CEQ Regulations, and 38 CFR Part 26 require that all reasonable alternatives be rigorously explored and objectively evaluated. Alternatives that are eliminated from detailed study must be identified, along with a brief discussion of the reasons for eliminating them. For the purposes of this analysis, an alternative was considered “reasonable” only if it would enable the VA to accomplish the primary mission of providing a suitable National Cemetery site that meets the purpose of, and need for, the Proposed Action. Although the No Action Alternative does not meet the purpose of, and need for, the Proposed Action, this alternative was to be retained because it reflects the status quo and serves as a benchmark against which the effects of the Proposed Action can be evaluated, as required under the CEQ Regulations (40 CFR 1502.14).

2.2.1 Evaluated Alternatives

This EA analyzes two alternatives, the Preferred Action Alternative and the No Action Alternative, as defined in the following sections.

2.2.1.1 Preferred Alternative

The VA identified one alternative that best met all of the VA’s screening criteria, as well as the purpose of, and need for, the Proposed Action. The VA’s Preferred Alternative is to construct Phase 1 of a new National Cemetery on 65 acres of the Drennan Road site. It would include the construction of the early turnover area, first gravesite areas, cemetery roads, entrance, administration and PIC building, two committal shelters, two pump houses, honor guard building, and maintenance facility. The Preferred Alternative is described in detail in Section 2.1.1.1 and shown in Figure 2-1.

2.2.1.2 No Action Alternative.

Under the No Action Alternative, the Proposed Action would not be implemented. Veterans and their families residing in southern Colorado would be unserved in the future; in many cases, this would require veterans and their families to either travel more than 75 miles to reach a National Cemetery in Colorado or to use a private cemetery for burials. The distribution of national cemeteries in the region would continue to be unequal, and the VA would not be in compliance with the requirements of the Servicemembers Civil Relief Act. Furthermore, the No Action Alternative would create a hardship for the survivors of deceased veterans for attending the funerals and for grave visitations, because of the distances between homes and the burial sites. If veterans and their families must resort to private burials, they are deprived of the honor and privilege bestowed upon them by a grateful nation for their service to their country.

Although the No Action Alternative does not meet the purpose of, and need for, the Proposed Action, this alternative was retained, because it reflects the status quo and serves as a benchmark against which the effects of the Proposed Action can be evaluated, as required under the CEQ Regulations (40 CFR 1502.14).
2.2.2 Alternative Eliminated from Detailed Consideration

Since the inception of the project, the VA has worked with the architects and engineers responsible for designing the project to identify and evaluate a range of design alternatives. Each of the design alternatives that were considered were evaluated against the NCA design guide. Through the five major iterations of the design process (MP1 through MP5), the VA evaluated the design alternatives and incorporated the design options that best met the VA’s screening criteria and needs. Throughout the design process, the VA ensured that each design alternative that was considered avoided sensitive environmental resources, such as protected species habitat and wetlands, per CEQ guidance. The proposed design avoids these resources to the greatest extent practicable. Where such was impracticable, as was the case for the floodplains on site, the proposed design includes measures that improve the predictability of the site’s flood regime.

Some of the major design features and alternatives that were considered and dismissed from detailed consideration are listed in the following paragraphs.

Stormwater Ponds and Buffers. Early designs called for different numbers of stormwater management ponds and locations. The VA was able to limit development in the areas adjacent to the stormwater management ponds. As a result, the amount of undeveloped buffer area around these features has been maximized in the final design to reduce stormwater runoff and generation and improve the quality of stormwater.

Administration/PIC Building. Early floor plans for the admin/PIC have been revised to provide enhanced views to both visitors and facility occupants, to provide appropriate functional adjacencies, and to maintain the building footprint at 4,400 gsf.

Location of Buildings and Structures. Early designs called for different locations for the administration and PIC building, maintenance building, flag assembly area, and other memorial features, resulting in conflicting traffic patterns between memorial activities and administrative functions. The final design carefully places administrative and maintenance structures in locations that enhance memorial activities and views.

By nature of the design process, design alternatives were constantly being assessed for impacts on the technical resource areas. They were eliminated or revised to avoid effects, and thus these alternatives and many other minor changes were not reviewed individually against each resource area in this SEA.