Wetland Delineation Report for the
Site Specific Environmental Assessment for the
Proposed Western New York National Cemetery

Contact Number: VA101F-12-D-0056
Project Number: VA101F-15-J-0139
CLIN 0002/MOD 1

Prepared for:
US Department of Veterans Affairs
Office of Construction and Facilities Management (003C4B)
425 I Street, NW
Washington, DC 20001

Prepared by:
AECOM
257 West Genesee Street, Suite 400
Buffalo, New York 14202-2657

On behalf of:
Mabbett & Associates, Inc.
5 Alfred Circle
Bedford, MA 01730

October 19, 2015
Table of Contents
1. Introduction .. 2
1.1. Project Overview ... 2
1.2. Regulatory Background ... 2
2. Site Description and Location .. 2
2.1. Physiography .. 2
2.2. Hydrology .. 3
2.3. Land Use .. 3
2.4. Wetland Ecosystems .. 3
2.5. Vegetation .. 3
2.6. Soils .. 4
3. Methodology .. 5
3.1. Site Resources Review ... 5
3.2. Field Surveys ... 5
3.2.1. Project Survey Area ... 5
3.2.2. Wetland Surveys ... 5
3.2.3. Stream Surveys .. 7
3.2.4. Mapping Procedures .. 7
4. Results and Discussion .. 7
4.1. Ecological Communities and Vegetation ... 7
4.2. Soils .. 8
4.3. Hydrology .. 8
4.4. Wetlands .. 8
4.5. Streams ... 9
5. Discussion .. 10
6. References .. 11

List of Tables
Table 1 Soils Mapped Within the Study Area
Table 2 Wetland Summary

LIST OF FIGURES
Figure 1 Site Location Map
Figure 2 Wetland and Stream Delineation
Figure 3 Soils

LIST OF ATTACHMENTS
Attachment 1 2015 Wetland Delineation Representative Photographic Log
Attachment 2 2015 Wetland Data Sheets
1. Introduction

On behalf of Mabbett & Associates, Inc., AECOM has prepared this Wetland Delineation Report for the U.S. Department of Veterans Affairs (VA) proposed Western New York National Cemetery (Project). The purpose of the Project is to develop a new National Cemetery and ancillary facilities for veterans and their eligible family members in western New York.

The Project Study Area for this Wetland Delineation Report is an approximately 271-acre multiple land parcel site located at 1232 Indian Falls Road in the Town of Pembroke, Genesee County, New York (Figure 1). The purpose of this report is to identify regulated aquatic resources within the Project Study Area and to provide the results of the delineation along with related information for the United States Army Corps of Engineers (USACE) and New York State Department of Environmental Conservation (NYSDEC) to verify wetland delineation boundaries and to make and document Jurisdictional Determinations of the wetlands within the Project Study Area.

1.1. Project Overview

The purpose of this Wetland Delineation Report is to describe the methodology and results of the field investigation to identify and delineate aquatic resources that may be subject to regulation under federal and/or state jurisdiction at the Project Study Area. A secondary purpose of this report is to characterize those aquatic resources found and documented at the Project Study Area. The need for this wetland delineation arose because wetlands were identified during a preliminary wetland evaluation at the site at the time when the VA was still evaluating the adequacy of this site and two others for a new Western New York National Cemetery.

1.2. Regulatory Background

Article 24 of the Environmental Conservation Law, commonly known as the Freshwater Wetlands Act, protects New York’s freshwater wetlands. Pursuant to Article 24, wetlands greater than 12.4 acres or wetlands of any size that possess unique qualities are regulated by New York State. In an attempt to preserve and protect wetlands, New York regulates areas adjacent to wetlands. Those areas are defined as land or water that is outside a wetland and within 100 feet of the wetland’s boundary.

The USACE has regulatory jurisdiction over waters of the United States including wetlands pursuant to Section 404 of the Clean Water Act and Navigable Waters of the United States pursuant to Section 10 of the 1899 Rivers and Harbors Act.

2. Site Description and Location

2.1. Physiography

The Project Study Area is located within the Ontario-Erie Plain and Finger Lakes Region, which encompasses approximately 9,960 square miles. Most of this area is in the Eastern Lake Section of the Central Lowland Province of the Interior Plains. Bedrock underlying this area consists of alternating beds of limestone, dolomite, sandstone and shale of Ordovician to Devonian age. Most of the ground surface of this area consists of glacial till or lake sediments.
The 271 acre Study Area is comprised of three land parcels (Figure 1). Parcel 1 is approximately 132 acres and is located on the west side of the study area. Parcel 2 is in the central section of the study area and is approximately 62 acres. Parcel 3 is located on the east side of the study area and is approximately 77 acres in size. Parcel 1 includes a large agriculture field in the north (planted with beans), a forested complex in the central and western sections, a reverting old field (saturated soils) in the east central section, and old reverting fields and shrublands in the southern section (Figure 1). Parcel 2 is predominantly successional old field transitioning to shrubland with minor areas of forested growth. Parcel 3 contains two (2) agriculture fields (corn and carrots) and two (2) shrub/forest mixed areas in the central and southern sections. There is a swale, classified as an intermittent stream, running through the middle of Parcel 3. The swale runs east to west until it reaches the edge of the parcel and then heads north along the western parcel boundary, where it then goes under Indian Falls Road and eventually into Tonawanda Creek.

2.2. Hydrology

The Project Study Area is located within the Galloway Swamp-Tonawanda Creek watershed (HUC 041201040301) and Middle Murder Creek watershed (HUC 041201040202) (Figure 1).

2.3. Land Use

The site is dominated by past and present agricultural activities. Much of the site is abandoned agricultural fields reverting to old field successional growth. There are three (3) active agricultural fields on site. Two (2) are in Parcel 3, planted with corn and carrots, and the 3rd is in the northern section of Parcel 1 planted with beans. The major forested components on site are associated with wetland 2 in Parcel 1, and with wetland 3 and wetland 6 in Parcel 3. The site topography is relatively flat (Figure 1). The parcel is bounded by Allegany Road to the west, Indian Fall Road to the north, New York State Thruway I-90 to the south and undeveloped natural land to the east.

2.4. Wetland Ecosystems

Wetlands are an abundant resource within this region due to vegetative ecotypes, climactic conditions and landscape diversity. In this region, wetlands occur on the shores of lakes and ponds, broad flats on former glacial plains, depressions and blocked drainages formed by morainal deposits, outwash deposits of sand and gravel where groundwater discharges or is often near the surface, and deposits of unsorted glacial till that have created relatively impermeable subsoils on flats and slopes. The region also contains large river systems that periodically flood low lying areas creating floodplain wetlands of various types (USEPA-USACE 2011).

2.5. Vegetation
The presence and distribution of local vegetative communities is attributable to the socioeconomic development within the rural residential and agricultural landscape of the Town of Pembroke. The dispersion and density of land cover within this area is indicative of adjacent land use, development, and existing natural resources. The Town of Pembroke is predominantly farmland and an upland forest/wetland mosaic with some residential and commercial areas.

2.6. Soils

Soil information was obtained from the United State Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS) (USDA-NRCS 2009). A list of soils present within the Project Study Area is presented in Table 1. Soils mapped in the Project Study Area by the NRCS are indicated in Figure 3. The dominant soils mapped in the Project Study Area include poorly drained Canandaigua silt loam, moderately well drained Phelps gravelly loam, well drained Ontario loam and somewhat poorly drained Ovid silt loam.

Poorly and very poorly drained soils are hydric soils. These areas typically support wetland plant communities. Areas mapped with somewhat poorly drained soils have the potential for hydric soil inclusions. Wetland areas can be found in association with these units.

Table 1. Soils Mapped within the Project Study Area

<table>
<thead>
<tr>
<th>Soil Map Unit Symbol</th>
<th>Soil Map Unit Name</th>
<th>Drainage Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApA</td>
<td>Appleton silt loam, 0 to 3 percent slopes</td>
<td>Somewhat poorly drained</td>
</tr>
<tr>
<td>CaA</td>
<td>Canandaigua silt loam, 0 to 2 percent slopes</td>
<td>Poorly drained</td>
</tr>
<tr>
<td>DuB</td>
<td>Dunkirk silt loam, 2 to 6 percent slopes</td>
<td>Well drained</td>
</tr>
<tr>
<td>FpA</td>
<td>Fredon gravelly loam, 0 to 3 percent slopes</td>
<td>Somewhat poorly drained</td>
</tr>
<tr>
<td>GnA</td>
<td>Galen very fine sandy loam, 0 to 2 percent slopes</td>
<td>Moderately well drained</td>
</tr>
<tr>
<td>GnB</td>
<td>Galen very fine sandy loam, 2 to 6 percent slopes</td>
<td>Moderately well drained</td>
</tr>
<tr>
<td>HaA</td>
<td>Halsey silt loam, 0 to 4 percent slopes</td>
<td>Very poorly drained</td>
</tr>
<tr>
<td>Ld</td>
<td>Lamson very fine sandy loam</td>
<td>Poorly drained</td>
</tr>
<tr>
<td>Le</td>
<td>Lamson mucky very fine sandy loam</td>
<td>Very poorly drained</td>
</tr>
<tr>
<td>LmA</td>
<td>Lima silt loam, 0 to 3 percent slopes</td>
<td>Moderately well drained</td>
</tr>
<tr>
<td>LmB</td>
<td>Lima silt loam, 3 to 8 percent slopes</td>
<td>Moderately well drained</td>
</tr>
<tr>
<td>NgA</td>
<td>Niagara silt loam, 0 to 2 percent slopes</td>
<td>Somewhat poorly drained</td>
</tr>
<tr>
<td>OnA</td>
<td>Ontario loam, 0 to 3 percent slopes</td>
<td>Well drained</td>
</tr>
<tr>
<td>OnB</td>
<td>Ontario loam, 3 to 8 percent slopes</td>
<td>Well drained</td>
</tr>
<tr>
<td>OvB</td>
<td>Ovid silt loam, 3 to 8 percent slopes</td>
<td>Somewhat poorly drained</td>
</tr>
<tr>
<td>PhA</td>
<td>Palmyra gravelly loam, 0 to 3 percent slopes</td>
<td>Well drained</td>
</tr>
<tr>
<td>PhB</td>
<td>Palmyra gravelly loam, 3 to 8 percent slopes</td>
<td>Well drained</td>
</tr>
<tr>
<td>PhC</td>
<td>Palmyra gravelly loam, 8 to 15 percent slopes</td>
<td>Well drained</td>
</tr>
<tr>
<td>PsA</td>
<td>Phelps gravelly loam, 0 to 3 percent slopes</td>
<td>Moderately well drained</td>
</tr>
</tbody>
</table>

Table 1, cont’d. Soils Mapped within the Project Study Area

<table>
<thead>
<tr>
<th>Soil Map Unit Symbol</th>
<th>Soil Map Unit Name</th>
<th>Drainage Class</th>
</tr>
</thead>
</table>
PsB Phelps gravelly loam, 3 to 8 percent slopes Moderately well drained
RsA Romulus silt loam, 0 to 3 percent slopes Poorly drained
Um Udorthents, smoothed Well drained

3. Methodology

3.1. Site Resources Review

A desktop analysis was conducted for the Project Study Area using existing information from federal and state agency databases, published literature review and state agency correspondence. The analysis was conducted to determine the presence and extent of biological and natural resources potentially occurring in the Project vicinity.

Vegetation cover types as defined by United States Geological Survey (USGS) Gap Analysis Program (GAP) Level 3 New York land cover data (USGS 2010b) were used to characterize vegetation communities at the site. Aerial photography was compared to GAP data to detect changes in vegetation structure and density associated with clearing of forested areas, development, restoration and land uses. Dominant vegetation communities were characterized according to the classification scheme presented in Ecological Communities of New York State, Second Edition (Edinger et al. 2002).

A review of existing information from NYSDEC Freshwater Wetland maps (CUGIR 2002) and United States Fish and Wildlife Service NWI wetland maps (USFWS 2009) was conducted to locate potential jurisdictional waters of the U.S. including wetlands (Figure 3). Current aerial imagery (NAIP 2009) and information from the NRCS soil survey (USDA-NRCS 2009) supplemented the review for potential wetland areas.

3.2. Field Surveys

3.2.1. Project Survey Area

The wetland delineation and surface waters survey in the Project Study Area were conducted by AECOM biologists in April, August and September 2015. The Project Study Area is shown on Figure 1.

3.2.2. Wetland Surveys

Wetlands in the Project Study Area were delineated using the routine methodology set forth in the USACE Wetland Delineation Manual (USACE 1987) and the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region (Version 2.0) (USACE 2012). A three parameter approach is used with these methods: vegetation, soils, and hydrology are assessed to identify the presence of wetlands. Initial boundaries of wetlands are established through visual assessment of vegetation and hydrology. Soils are assessed to determine the final boundary. For each plant community, sampling plots were established and vegetation, soils and hydrology were characterized. The sections below describe the results of this sampling. Wetlands were determined to be present if the sample plots exhibited the qualifying criteria of a dominance of hydrophytic vegetation, hydric soils and wetland
The wetland determination for difficult or problematic wetlands was made utilizing guidance in Section 5 of the Northcentral and Northeast Supplement (USACE 2012).

For each delineated wetland, data recorded on the USACE Wetland Determination Data Forms included:

- Sketch map of each wetland feature
- Drainage patterns
- Sample plot locations
- Photo point locations and direction of photo
- Plant, soil, hydrology and other relevant information to support the determination

Photographs taken for each wetland area investigated are presented in Attachment 1. The USACE Wetland Determination and Stream Data Forms are presented in Attachment 2. Field-delineated wetlands and streams are presented in Figure 2. The following sections describe the methods used to evaluate vegetation, soils and hydrology.

Vegetation

For each sample plot, herbaceous, shrub, tree and vine strata were analyzed and characterized based on absolute cover, plant dominance and plant indicator status. The percent cover by species was determined using a 5-foot radius for the herbaceous layer, a 15-foot radius for the shrub/sapling layer, and 30-foot radii for tree and vine strata where present. The wetland indicator status was determined for each dominant plant species based on the USACE National Wetland Plant List (Lichvar 2013) and the 2014 Update of Wetland Ratings (Lichvar 2014). Problematic areas of vegetation with irregular shapes or sizes were evaluated using an adjusted survey area but still with the same square footage: 2,827 sq. ft. for a 30-foot radius plot (tree) and 707 sq. ft. for a 15-foot radius plot (shrub/sapling). For potential wetland areas that were smaller than the recommended sampling plot areas, the area was considered on the whole due to the limits of square footage.

Soils

Two soil test pits were dug at each investigated wetland area with a “sharpshooter” (5” drain tile) shovel to a maximum depth of 20 inches. The first soil test pit was placed in an area of readily distinguishable wetland plant communities. The second soil pit was placed in an adjacent upland area. The results of the soil survey were used to verify and document the boundary between wetlands and adjacent uplands. Soil profiles were inspected for the presence of hydric soil indicators as described in the USACE Northcentral and Northeast Regional Supplement (USACE 2012). A Munsell Soil Color Chart (Macbeth 1994) was used to define the soil hue, value and chroma of the samples collected from each test pit.

Hydrology

A visual assessment of primary and secondary wetland indicators was conducted at each wetland. In this region, primary wetland hydrology indicators include surface water, high water table, soil saturation, water-stained leaves, sediment deposits, drift deposits, algal mats or crust
and others. Secondary wetland hydrology indicators include surface soil cracks, moss trim lines, drainage patterns, oxidized rhizospheres on living roots, FAC-neutral test and others. The soil pits were observed for the presence and stabilization of an apparent high water table.

3.2.3. Stream Surveys

AECOM biologists evaluated surface waters in the Project Study Area following guidance provided in the USACE Jurisdictional Determination Form Instruction Guidebook, joint U.S. Environmental Protection Agency (USEPA) and USACE guidance regarding Clean Water Act (CWA) jurisdiction after Rapanos, and joint guidance on identifying waters protected by CWA (USEPA-USACE 2007, 2008, 2011).

A visual interpretation of the ordinary high water mark (OHWM), as defined by USACE (2005), was conducted for all streams and drainages. The stream bank was evaluated for physical characteristics established by the fluctuations of water to determine the OHWM. These characteristics included a clear, natural line impressed on the bank, shelving along the bank, changes in the character of the soil, disturbed vegetation, and the presence and location of debris in vegetation along the bank.

Stream characteristics such as stream width, water depth, substrate composition, bank vegetation, stream flow direction and Cowardin Classification (Cowardin et al. 1979) were recorded on Routine Data Forms (provided in Attachment 2).

3.2.4. Mapping Procedures

Wetland boundaries were identified and marked in the field with pink wetland delineation “surveyor” flagging tape. The wetland boundaries were surveyed using a Trimble Geo® XH™ Global Positioning System (GPS). This GPS unit generally possesses sub-meter accuracy with increased accuracy in open areas with little tree canopy. Factors including environmental (weather), topography, satellite positioning and user error can contribute to poor capture results. None of these factors influenced the data gathered during the delineation.

4. Results and Discussion

4.1. Ecological Communities and Vegetation

The density and dispersion of existing natural resources in the Project Study Area site is similar to that of the surrounding areas. The Town of Pembroke consists mostly of agriculture fields, forested uplands, and wetland complexes with some residential and commercial areas.

Wetlands delineated in the Project Study Area consisted of emergent (wet meadow), scrub/shrub and forested wetland plant communities. Wetland 2 and Wetland 3 have similar ecological communities and are located in areas mapped with NYSDEC wetlands. The emergent wetland areas were primarily dominated by cattail (Typha latifolia), willow (Salix spp.), reed canary grass (Phalaris arundinacea), sedges (Carex and Scirpus spp.) and sensitive fern (Onoclea sensibilis). Scrub-shrub wetland plant communities were dominated by red-osier dogwood (Cornus sericea) and willow as well as emergent species. The forested components of the wetlands include red
maple (*Acer rubrum*), silver maple (*Acer saccharinum*), green ash (*Fraxinus pensylvanica*) and willow.

No State or Federal listed rare, threatened or endangered species were observed during the field investigations. Further investigation for the presence of rare, threatened and endangered species or habitats within the project site occurred in May, August and September 2015. The results of that investigation will be presented in a separate biological assessment report currently in development.

4.2. Soils

Twenty-two soil units mapped by the NRCS occur within the Project Study Area, as listed in Table 2 and depicted in Figure 3. The dominant soils mapped in the delineated wetland areas are poorly drained (hydric) and somewhat poorly drained (potential for hydric soil inclusions) soils. Hydric soils are defined as soils that are formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register 1994). The hydric criteria for soils in the Northcentral and Northeast Region of the United States have been updated in the Regional Supplement (USACE 2012). Soil characteristics can be important indicators of wetland and upland boundaries. This is especially useful in cases where potential wetland vegetation is lacking or has been removed or impacted. Although hydrophytic vegetation and wetland hydrology indicators must be confirmed before a wetland determination can be made, hydric soils information is useful in determining the potential presence of wetlands.

4.3. Hydrology

Local hydrology is influenced by seasonal pooling of storm and melt water, rainfall runoff and perched groundwater. Surface water observed during the field work in the Project Study Area included a very small open water section in the southwest corner of Wetland 1 and ponded water towards the center of the forested area in Wetland 2. The emergent wetlands in Wetland 2 in the central sections were ponded to a depth of approximately 2 inches and the small ponded area in the corner of Wetland 1 was about 6 inches in depth. Wetland 4 contained areas of open water up to approximately 8 inches in depth, and Wetland 5 contained an open water “swale” with water depth ranging from 4-24 inches. Wetland 3 and 6 did not possess any standing water at the time of documentation but signs of past pooled water including crack surface soil and sedimentation deposits were observed.

The most prevalent indicators of wetland hydrology in the delineated wetlands were Surface Water (A1), Saturation (A3), Inundation Visible on Imagery (B7), Hydrogen Sulfide Odor (C1), and Oxidized Rhizospheres on Living Roots (C3).

4.4. Wetlands

Six (6) wetlands totaling approximately 86.1 acres were delineated within the Project Study Area, as summarized in Table 2 and depicted in Figure 2.
Based on the results of the field survey and the review of topographic maps, aerial imagery, and hydrology data, it appears some of the wetland areas delineated have a hydrologic connection to adjacent off-site wetland areas, as describing in the comment field in Table 2.

Table 2. Wetland Summary for the Project Study Area

<table>
<thead>
<tr>
<th>Wetland</th>
<th>Cowardin Classification(1)</th>
<th>NYSDEC Wetland</th>
<th>Parcel 1</th>
<th>Parcel 2</th>
<th>Parcel 3</th>
<th>Size in Project Study Area (acres approx.)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>PEM/PSS</td>
<td>-</td>
<td>0.3</td>
<td>16.5</td>
<td>16.8</td>
<td>Large shrubland wetland with a complex of historic agricultural swales.</td>
<td></td>
</tr>
<tr>
<td>W2</td>
<td>PFO/PSS/PEM</td>
<td>AK-14</td>
<td>42.0</td>
<td>4.6</td>
<td>46.6</td>
<td>Borders Alleghany Road to the west.</td>
<td></td>
</tr>
<tr>
<td>W3</td>
<td>PSS</td>
<td>AK-15</td>
<td>1.1</td>
<td>4.0</td>
<td>8.77</td>
<td>Attached hydrologically to NYSDEC AK-15 to the east.</td>
<td></td>
</tr>
<tr>
<td>W4</td>
<td>PFO/PSS</td>
<td>AK-14</td>
<td>2.8</td>
<td></td>
<td>3.1</td>
<td>Just south of Wetland 2, separated by a gravel access road.</td>
<td></td>
</tr>
<tr>
<td>W5</td>
<td>PFO/PSS</td>
<td>-</td>
<td>1.8</td>
<td></td>
<td>2.0</td>
<td>Connects to unnamed tributary of Murder Creek.</td>
<td></td>
</tr>
<tr>
<td>W6</td>
<td>PSS/PEM/PFO</td>
<td>-</td>
<td></td>
<td>3.4</td>
<td>3.4</td>
<td>Part of NWI wetland.</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>48.0</td>
<td>25.1</td>
<td>12.2</td>
<td>86.1</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1 – Cowardin et al. 1979
NA – Not applicable

4.5. Streams

An intermittent stream separates the two active agricultural fields in the eastern section of Parcel 3 where it flows east to west until it reaches the central successional old field and flows north along the western boundary of Parcel 3. This feature crosses Indian Falls Road via a culvert. This stream connects with Tonawanda creek (NYSDEC class B Stream) approximately .3 miles north of the site. Water was only found in the northern most reach near Indian Falls Road. A drainage ditch complex in Parcel 2 spreads throughout Wetland 1 and connects with the intermittent stream approximately 600 feet from Indian Falls Road. This was dry during the time of the survey.
One small ditch was observed along a hedgerow separating the north and south fields, as depicted on Figure 2. The ditch varies from 2 to 5 feet wide, 1 to 2 feet deep and is approximately 284 feet in length. The majority of the ditch is vegetated with emergent and shrubby plants with a few trees along the top of bank. This feature is likely a remnant of the past agricultural activity and does not meet the criteria for regulation.

Off the southern boundary of the study area is an un-named tributary to Murder Creek. This feature was observed in the field but not mapped since it was not part of the project study area. It is a medium sized man-made swale that runs parallel to NYS Thruway I-90 (approximately 10 feet wide and 1 foot deep). Wetland W-5 outfalls into this feature in the southwest corner of the study area via a small man-made drainage swale (2 to 3 feet wide and 0.5 to 1 foot deep) that runs parallel to Allegany Road.

5. Discussion

Field surveys for wetland delineations and water resources were conducted on April 28 and 29, August 26, 27, 28 and 31, and September 8, 2015, within the USDVANCA Project Study Area. The field surveys performed in April were on the western section (Parcel 1) and the August and September surveys were performed on the central and eastern sections (Parcels 2 & 3) (Figure 2). Six (6) wetlands totaling approximately 86.1 acres in size were delineated in the Project Study Area. One (1) intermittent stream was delineated on site.

Based on the field investigation and a review of aerial imagery, topographic maps and hydrologic data, the delineated wetlands appear to have a hydrologic connection to Waters of the U.S. and are therefore likely federal jurisdictional wetlands.

Wetland 2 is included in mapped NYSDEC Wetland AK-14. All of delineated Wetland 2 and 100-foot adjacent buffer area would likely be regulated by the NYSDEC. Due to close proximity to Wetland 2 and NYSDEC State Wetland AK-14, Wetland 4 may also be considered by the NYSDEC as part of the mapped Wetland AK-14 complex and fall under State jurisdiction. Wetland 3 is connected to NYSDEC Wetland AK-15 and may fall under State jurisdiction.

It is anticipated that wetlands permits and Jurisdictional Determination will be required from the NYSDEC and USACE via a Joint Application for Permit in accordance with NYSDEC Article 24-Freshwater Wetlands, and Section 401-Water Quality Certification, and Section 404 of the Clean Water Act.
6. References

New York State Department of Environmental Conservation - New York Natural Heritage Program website. Rare plant information, May 2003.

Figures
Legend

Site Location

Source:
© 2013 National Geographic Society, i-cubed; 1:24,000-scale USGS Topographic Maps, Akron SE, Corfu NE, Oakfield SW, Alexander NW

SITE LOCATION MAP
VA PROPOSED WESTERN NEW YORK NATIONAL CEMETERY PEMBROKE, NEW YORK

FIGURE 1
Field Data Collection Information:
- Boundary coordinates were collected using a Trimble GeoXH with ESRI's ArcPad
- Data was Post-Processed using Trimble's GeoPathfinder Office

Sources:
- Aerial Photo: ESRI World Imagery, USDA Farm Service Agency National Agriculture Imagery Program 2013
- NYSDEC Wetlands and Streams: NYS GIS Clearinghouse, NYSDEC 2002
- USFWS Wetlands: USFWS National Wetlands Inventory 2014

PARCEL 1: 132 Acres
PARCEL 2: 60 Acres
PARCEL 3: 77 Acres
Wetland 1: 16.81 Acres
Wetland 2: 46.55 Acres
Wetland 3: 14.24 Acres
Wetland 4: 3.10 Acres
Wetland 5: 2.01 Acres
Wetland 6: 3.39 Acres

Legend
- Blue: Swale
- Pink: Wetland Continuation Line
- Black: Stream
- Green: Wetlands
- Red: Site Location
- Orange: Parcel Boundary

FIGURE 2

WETLAND & STREAM DELINEATION
VA PROPOSED WESTERN NEW YORK NATIONAL CEMETERY
PEMBROKE, NEW YORK

WETLANDS AND STREAMS
PEMBROKE, NEW YORK

Pennsylvania

400 0 400 Feet

FIGURE 2
Legend

- **NYSDEC Stream**
- **NYSDEC Wetlands**
- **USFWS NWI Wetlands**
- **Site Location**
- **Parcel Boundary**

Field Data Collection Information:
- Boundary coordinates were collected using a Trimble GeoXH with ESRI's ArcPad
- Data were Post-Processed using Trimble's GeoPathfinder Office

Sources:
- Aerial Photo: ESRI World Imagery, USDA Farm Service Agency National Agriculture Imagery Program 2013
- NYSDEC Wetlands and Streams: NYS GIS Clearinghouse, NYSDEC 2002
- USFWS Wetlands: USFWS National Wetlands Inventory 2014

FIGURE 3

NWI & NYSDEC WETLANDS
VA PROPOSED WESTERN NEW YORK NATIONAL CEMETERY
PEMBROKE, NEW YORK

Pennsylvania
FIGURE 4
SOILS MAP
VA PROPOSED WESTERN NEW YORK NATIONAL CEMETERY
PEMBROKE, NEW YORK

Legend

- Site Location
- Soil Boundary

Soils within Site Location:

ApA Appleton silt loam, 0 to 3 percent slopes
CaA Canandaigua silt loam, 0 to 2 percent slopes
DuB Dunkirk silt loam, 2 to 6 percent slopes
FpA Fredon gravelly loam, 0 to 3 percent slopes
GnA Galen very fine sandy loam, 0 to 2 percent slopes
GnB Galen very fine sandy loam, 2 to 6 percent slopes
HaA Halsey silt loam, 0 to 4 percent slopes
Ld Lamson very fine sandy loam
Le Lamson mucky very fine sandy loam
LmA Lima silt loam, 0 to 3 percent slopes
LmB Lima silt loam, 3 to 8 percent slopes
NgA Niagara silt loam, 0 to 2 percent slopes
OnA Ontario loam, 0 to 3 percent slopes
OnB Ontario loam, 3 to 8 percent slopes
OvB Ovid silt loam, 3 to 8 percent slopes
PhA Palmyra gravelly loam, 0 to 3 percent slopes
PhB Palmyra gravelly loam, 3 to 8 percent slopes
RsA Romulus silt loam, 0 to 3 percent slopes
Um Udorthents, smoothed

Sources:
- Aerial Imagery: ESRI World Imagery, USDA Farm Service Agency National Agriculture Imagery Program 2013
- Data: USDA NCRS Geospatial Data Gateway 2015

400 0 400 Feet
Attachment 1
<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28April15</td>
<td>Wetland W-1</td>
</tr>
<tr>
<td>2</td>
<td>28April15</td>
<td>Upland area for W-1</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Date</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Photo No. 3</td>
</tr>
<tr>
<td>3</td>
<td>28April15</td>
<td>Wetland W-2 eastern portion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Photo No. 4</td>
</tr>
<tr>
<td>4</td>
<td>28April15</td>
<td>Upland area for W-2 eastern portion</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Date</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>5</td>
<td>28 April 15</td>
<td>Wetland W-3</td>
</tr>
<tr>
<td>6</td>
<td>28 April 15</td>
<td>Upland area for W-3</td>
</tr>
</tbody>
</table>
PHOTOGRAPHIC LOG

Title: USDVA Wetland Delineation
Location: Pembroke NY

<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>28April15</td>
<td>Wetland W-4</td>
</tr>
<tr>
<td>8</td>
<td>28April15</td>
<td>Upland area for W-4</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Date</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>9</td>
<td>28April15</td>
<td>Wetland W-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>28April15</td>
<td>Upland area for W-5</td>
</tr>
</tbody>
</table>
PHOTOGRAPHIC LOG

Title: USDVA Wetland Delineation
Location: Pembroke NY

<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>29April15</td>
<td>Wetland W-2 western portion</td>
</tr>
<tr>
<td>12</td>
<td>29April15</td>
<td>Upland for W-2 western portion</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Date</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>13</td>
<td>27AUG15</td>
<td>Wetland W-1 (ext)</td>
</tr>
<tr>
<td>14</td>
<td>27AUG15</td>
<td>Upland area for W-1 (ext)</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Date</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td></td>
<td>31AUG15</td>
<td>Wetland W-2 (ext)</td>
</tr>
<tr>
<td>15</td>
<td>31AUG15</td>
<td>Upland for W-2 (ext)</td>
</tr>
<tr>
<td>16</td>
<td>31AUG15</td>
<td></td>
</tr>
<tr>
<td>Photo No.</td>
<td>Date</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>17</td>
<td>26AUG15</td>
<td>Wetland W-3 (ext)</td>
</tr>
<tr>
<td>18</td>
<td>26AUG15</td>
<td>Upland area for W-3 (ext)</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Date</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>19</td>
<td>28AUG15</td>
<td>Wetland W-6</td>
</tr>
<tr>
<td>20</td>
<td>28AUG15</td>
<td>Upland for W-6</td>
</tr>
</tbody>
</table>
PHOTOGRAPHIC LOG

<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>26AUG15</td>
<td>Stream S-1</td>
</tr>
<tr>
<td>22</td>
<td>26AUG15</td>
<td>Stream S-1-south central</td>
</tr>
</tbody>
</table>
Attachment 2
Data Form

Routine Wetland Determination

- **Project Number:** 60345076
- **Applicant:** USDVA

- **Nearest Flag to Data Point:** WI-3

Hydrology

<table>
<thead>
<tr>
<th>Primary Indicators (min. - 1 required; check all that apply)</th>
<th>Secondary Indicators (min. - 2 required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Water (A1)</td>
<td>Surface Soil Cracks (B6)</td>
</tr>
<tr>
<td>High Water Table (A2)</td>
<td>Drainage Patterns (B10)</td>
</tr>
<tr>
<td>Saturation (A3)</td>
<td>Moss Traps Lines (B16)</td>
</tr>
<tr>
<td>Water Marks (B1)</td>
<td>Dry-Season Water Table (C2)</td>
</tr>
<tr>
<td>Sediment Deposits (B2)</td>
<td>crayfish Burrows (C8)</td>
</tr>
<tr>
<td>Drift Deposits (B3)</td>
<td>Saturation Visible on Aerial Imagery (C9)</td>
</tr>
<tr>
<td>Algal Mat or Cush (B4)</td>
<td>Stunted or Stressed Plants (D-1)</td>
</tr>
<tr>
<td>Iron Deposits (B5)</td>
<td>Geomorphic Position (D-2)</td>
</tr>
<tr>
<td>Inundation Visible on Aerial Imagery (B7)</td>
<td>Shallow Aquatic (D-3)</td>
</tr>
<tr>
<td>Sparsely Vegetated Concave Surface (B8)</td>
<td>Microtopographic Relief (D4)</td>
</tr>
<tr>
<td>Other (Explain in Remarks)</td>
<td>FAC-Neutral Test (D5)</td>
</tr>
</tbody>
</table>

Field Observations

- **Inundation Present?** Yes [X] No
- **Saturated Conditions?** Yes [X] No

- **Depth of Water (inches):** 4
- **Depth to Set. Soil (inches):** 8
- **Depth to Water (inches):**

Stream Characteristics

<table>
<thead>
<tr>
<th>Stream type</th>
<th>Morphology</th>
<th>Stream Gradient</th>
<th>Substrate</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perennial</td>
<td>Bank Width</td>
<td>Gentle</td>
<td>Bed Rock</td>
<td>No Flow</td>
</tr>
<tr>
<td>Intermittent</td>
<td>Stream Width</td>
<td>Moderate</td>
<td>Boulder</td>
<td>Gentle</td>
</tr>
<tr>
<td></td>
<td>Water Depth</td>
<td>Steep</td>
<td>Cobble</td>
<td>Moderate</td>
</tr>
<tr>
<td>Adjacent Community Type:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Instream Conditions:**
 - Obscurred Banks
 - Deep Pools
 - Overhanging Vegetation
 - Well Defined Banks
 - Riffles & Pools
 - Vegetated Channel
 - Eroded/Undercut Bank
 - Other

Remarks:

Small open water wetland (pool) with fringe saturated soils on the est edge of site continues offshore.

Field Note: The field notes are not legible.
<table>
<thead>
<tr>
<th>Tree Stratum (Plot size: 30-foot radius)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Dominance Test worksheet:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number of Dominant Species That Are OBL, FACW, or FAC: ____ (A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Number of Dominant Species Across All Strata: ____ (B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Percent of Dominant Species That Are OBL, FACW, or FAC: ____ (B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapling/Shrub Stratum (Plot size: 15-foot radius)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Cornus sericea</td>
<td>15</td>
<td>Y</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td>2. Salix spp.</td>
<td>5</td>
<td>N</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover = 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Herb Stratum (Plot size: 5-foot radius)				
1. Typha spp.	15	Y	OBL	
2. Phalaris arundinacea	20	Y	FACW	
3.				
4.				
5.				
Total Cover = 36				

Woody Vine Stratum (Plot size: 30-foot radius)				
1.				
2.				
3.				
4.				
5.				
Total Cover =				
Soil

Soil Map Unit: LMA Silt Loam

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators).

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>Frequency</th>
<th>Type</th>
<th>Loc²</th>
<th>Texture, Structure, Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-16</td>
<td>10YR 3/4</td>
<td>100</td>
<td></td>
<td></td>
<td>Nucl Silt Loam</td>
</tr>
<tr>
<td>16-20</td>
<td>10YR 3/2</td>
<td>100</td>
<td></td>
<td></td>
<td>Clay Loam</td>
</tr>
</tbody>
</table>

¹Frequency: F=Few, MA=Moderately Abundant, C=Common
²Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains
³Location: PL=Pore Lining, M=Matrix

Hydric Soil Indicators

- Histosol (A1)
- Histic Epipedon (A2)
- Black Hist (A3)
- Black Hydroglic (A4)
- Stratified Layers (A5)
- Dystric Dull Surface (A11)
- Sandy Mucky Soil (A12)
- Sandy Gleyed Matrix (S4)
- Sandy Gleyed Matrix (S5)
- Spotted Surface (S6)
- Dark Surface (S7)
- Polvvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)

Problematic Hydric Soil Indicators

- 2 cm Muck (A16)
- Coast Prairie Redox (A16)
- 5 cm Mucky Peat or Peat (S3)
- Dark Surface (S7)
- Polvvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Iron-Manganese Masses (F12)
- Pleistocene Floodplain Soils (F13)
- Masic Spodic (TA6)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)
- Other (Explain in remarks)

Wetland Determination

- **Hydrophytic vegetation present?** Yes No
- **Hydric Soil present?** Yes No
- **Wetland Hydrology present?** Yes No
- **Is this sampling point within a wetland?** Yes No
- **Is the wetland mapped in the NWI?** Yes No
- **Is the wetland a mapped state wetland?** Yes No

Hydrologic Connectivity to off-site wetlands? Yes No N/A

Does any part of this delineated wetland/stream extend past the flagged boundary? Yes No N/A

Is this wetland potentially isolated? Yes No N/A

If yes, indicate classification

If yes, indicate wetland ID
DATA FORM

ROUTINE WETLAND DETERMINATION

- **Town:** Pembroke
- **Sampling Date:** 28 April 2015
- **County:** Genesee
- **State:** New York
- **Community:** Upwind

Project Number: 60345026
Applicant: USDA

Data Point ID (i.e. 2W@Wet. G): L.I.
Nearest Flag to Data Point:

Investigator(s): J. Lyons

Landform: Hillside/Sep
Tone of Slope: Depressional
Riparian:

Is the area a potential problem area? Yes No
Is the site significantly disturbed? Yes No

Landscape Position: Flat
Undulating:
Sloping:
Convex:
Concave:

Approximate Slope (%): 1-2

Are climatic/hydrologic conditions on the site typical for this time of year? Yes No

Do Normal Circumstances exist on site? Yes No

Hydrology

Primary Indicators (min. - 1 required; check all that apply)
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)
- Water-Stained Leaves (B9)
- Aquatic Fauna (B13)
- Muck Deposits (B14)
- Organic Matter (B15)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain In Remarks)

Secondary Indicators (min. - 2 required)
- Surface Soil Cracks (B6)
- Drainage Patterns (B10)
- Moss Trm Lines (B16)
- Dry-Season Water Table (C2)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Stunted or Stressed Plants (D-1)
- Geomorphic Position (D2)
- Shallow Aquitard (D3)
- Microtopographic Relief (D4)
- FAC-Neutral Test (D5)

Field Observations

Inundation Present? Yes No
Saturated Conditions? Yes No
Depth of Water (inches):

Depth to Sat. Soil (inches):

Depth to Water (inches):

Stream Characteristics

Stream type: Perennial
Morphology: Bank Width

Stream Gradient: Gentle

Substrate: Bed Rock
Sand:

Flow: No Flow

Intermittent

Stream Width: Moderate

Water Depth: Deep

Adjacent Community Type:

Instream Conditions:
- Obscured Banks
- Well Defined Banks
- Eroded/Undercut Bank

Deep Pools

Riffles & Pools

Overhanging Vegetation

Vegetated Channel

Other

Remarks

Upload area is wetly wet in reversion as field. (Successional growth visible)
Vegetation

Tree Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>1.</th>
<th>Absolute</th>
<th>Dominant</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Cover</td>
<td>Species?</td>
<td>Status</td>
</tr>
</tbody>
</table>

Dominance Test worksheet:
- Number of Dominant Species That Are OBL, FACW, or FAC: [A]
- Total Number of Dominant Species Across All Strata: (B)
- Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)

Prevalence Index worksheet:
- Total % Cover of:
 - OBL species: \(x_1 \)
 - FACW species: \(x_2 \)
 - FAC species: \(x_3 \)
 - FACU species: \(x_4 \)
 - UPL species: \(x_5 \)

Column Totals: (A) (B)

Prevalence Index = (B/A) =

Sapling/Shrub Stratum (Plot size: 15-foot radius)

<table>
<thead>
<tr>
<th>1.</th>
<th>Absolute</th>
<th>Dominant</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Cover</td>
<td>Species?</td>
<td>Status</td>
</tr>
</tbody>
</table>

Herb Stratum (Plot size: 5-foot radius)

<table>
<thead>
<tr>
<th>1.</th>
<th>Trifolium spp.</th>
<th>10</th>
<th>Y</th>
<th>FACU</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Taraxacum officinale</td>
<td>10</td>
<td>Y</td>
<td>FACU</td>
</tr>
<tr>
<td>3.</td>
<td>Phleum pratense</td>
<td>25</td>
<td>Y</td>
<td>FACU</td>
</tr>
<tr>
<td>4.</td>
<td>Solidago canadensis</td>
<td>5</td>
<td>Y</td>
<td>FACU</td>
</tr>
</tbody>
</table>

Hydrophytic Vegetation Indicators:
- Rapid Test for Hydrophytic Vegetation
- Dominance Test >50%
- Prevalence Index ≤0.1
- Morphological Adaptations¹ (provide supporting data in remarks)
- Problematic Hydrophytic Vegetation² (explain in remarks)

Definitions of Vegetation Strata:
- Trees - Woody plants 5 ft (1.5 m) or more in diameter at breast height (DBH), regardless of height.
- Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.
- Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
- Woody vines - All woody vines greater than 3.28 ft in height.

Remarks
- Background of dead veg. from last year.
Project Number: 60345076
Applicant: USDA
Soil Map Unit: Ouid silt loam
Sampling Date: 28 April 2015
Data Point ID: UP-1

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>Frequency</th>
<th>Type</th>
<th>Loc</th>
<th>Texture, Structure, Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-16</td>
<td>10YR 3/3</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51% silt loam</td>
</tr>
<tr>
<td>16-20</td>
<td>10YR 5/8</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51% silt loam</td>
</tr>
</tbody>
</table>

*Frequency: F=Few, MA=Moderately Abundant, C=Common
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains
Loc=Location: PL=Pore Lining, M=Matrix*

Hydric Soil Indicators
- Histosol (A1)
- Histic Epipedon (A2)
- Black Hist (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A6)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Depleted Dark Surface (F6)
- Redox Dark Surface (F7)
- Redox Depressions (F8)

Problematic Hydric Soil Indicators
- 2 cm Muck (A10)
- Coastal Prairie Redox (A16)
- 5 cm Mucky Peat or Peat (S3)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Iron-Manganese Masses (F12)
- Piedmont Floodplain Soils (F19)
- Mosaic Spodio (TA6)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)
- Other (Explain in remarks)

Restrictive Layer (If observed)
- Type:
- Depth (inches):

Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic.

Remarks
Typical agrarian soil - evidence of old plow depth.

Wetland Determination

- Hydrophytic Vegetation Present? Yes No
- Hydrologic Connectivity to Off-site Wetlands? Yes No (NA)
- Does Any Part of this Delineated Wetland/Stream Extend Past the Flagged Boundary? Yes No (NA)
- Is this Wetland Potentially Isolated? Yes No (NA)
- Is this Sampling Point Within a Wetland? Yes No
- If the wetland is mapped in the NW? Yes No
- If the wetland is a mapped state wetland? Yes No

If yes, indicate classification:
If yes, indicate wetland ID:

US Army Corps of Engineers
Northcentral and Northeast Region - Interim Version
DATA FORM
ROUTINE WETLAND DETERMINATION
Northcentral and Northeast Regional Supplement

Project Number: 60345076
Applicant: USDA

Data Point ID (i.e. 2WEwet G): W-2

Nearest Flag to Data Point:

Investigator(s): J. Lyons

Landform: Hillside/Seep Toe of Slope Depressional Riparian
Landscape Position: Flat Undulating Sloping Convex Concave

Are climatic/hydrologic conditions on the site typical for this time of year? Yes No
Is the area a potential problem area? Yes No
Is the site significantly disturbed? Yes No

Approximate Slope (%): 1-2

Hydrology

Primary Indicators (min. - 1 required; check all that apply)
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)
- Water-Stained Leaves (B9)
- Aquatic Fauna (B13)
- Mollusk Deposits (B15)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain in Remarks)

Secondary Indicators (min. - 2 required)
- Surface Soil Cracks (B6)
- Drainage Patterns (B10)
- Soil Trim Lines (B16)
- Dry-Season Water Table (C2)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Stunted or Stressed Plants (D-1)
- Geomorphic Position (D2)
- Shallow Aquifer (D3)
- Microtopographic Relief (D4)
- FAC-Neutral Test (D5)

Field Observations
Inundation Present? Yes No Depth of Water (inches): 1-6
Saturated Conditions? Yes No Depth to Sat. Soil (inches): 0

Stream Characteristics

Stream type: Perennial
Morphology: Bank Width Gentle
Stream Gradient: Moderate
Substrate: Bed Rock Sand
Flow: No Flow

Intermittent
Stream Width
Water Depth

Adjacent Community Type:

Instream Conditions:
- Obscured Banks
- Deep Pools
- Overhanging Vegetation
- Well Defined Banks
- Riffles & Pools
- Vegetated Channel
- Eroded/Undercut Bank
- Other

Remarks: W2 is a large complex with mainly pro wetland and contact areas. W3 is in the central o east areas with a small pro component toward east side of the site. Several data points were taken due to the size and complexity of W2, part of DEQ's 2013 wetlands.
Vegetation

<table>
<thead>
<tr>
<th>Tree Stratum (Plot size: 30-foot radius)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Dominance Test worksheet:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer rubrum</td>
<td>5</td>
<td>y</td>
<td>FAC</td>
<td>Number of Dominant Species</td>
</tr>
<tr>
<td>Acer saccharinum</td>
<td>5</td>
<td>y</td>
<td>FAC</td>
<td>That Are OBL, FACW, or FAC:</td>
</tr>
<tr>
<td>Populus tremuloides</td>
<td>5</td>
<td>y</td>
<td>FAC</td>
<td>(A)</td>
</tr>
</tbody>
</table>

Total Number of Dominant Species Across All Strata: (B)

Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)

Prevalence Index worksheet:

<table>
<thead>
<tr>
<th>Total % Cover</th>
<th>Multiply by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>OBL species</td>
</tr>
<tr>
<td></td>
<td>FACW species</td>
</tr>
<tr>
<td></td>
<td>FAC species</td>
</tr>
<tr>
<td></td>
<td>FACW species</td>
</tr>
<tr>
<td></td>
<td>UPL species</td>
</tr>
<tr>
<td></td>
<td>Column Totals</td>
</tr>
</tbody>
</table>

Prevalence Index = $A/(A+B)$

Hydrophytic Vegetation Indicators:

- Rapid Test for Hydrophytic Vegetation
- Dominance Test $>$ 50%
- Prevalence Index $<$ 3.0
- Morphological Adaptations (provide supporting data in remarks)
- Problematic Hydrophytic Vegetation (explain in remarks)

Definitions of Vegetation Strata:

- **Tree** - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
- **Sapling/Shrub** - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.
- **Herb** - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
- **Woody Vines** - All woody vines greater than 3.28 ft in height.

Remarks

- The central area (old field with surface saturation) is mostly RCE & Salix. Data presented is from east/control
- Contracted data points outside established RCE & wetlands.
- Veg in early stages of growth.

Veg in early stages of growth

US Army Corps of Engineers

Northcentral and Northeast Region - Interim Version
Project Number: 60345076
Sampling Data: 28 April 2015
Data Point ID: 22
Applicant: USDA
Soil Map Unit: Mostly Canandaigua silt loam

Soil Profile Description:
(Describe the depth needed to document the indicator or confirm the absence of indicators.

| Depth (inches) | Matrix Color (moist) | % | Color (moist) | Redux Features
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-18</td>
<td>10YR 2/2</td>
<td>98</td>
<td>10YR 2/4</td>
<td>F = c n</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Silty loam with slight mottles</td>
</tr>
<tr>
<td>18-20</td>
<td>10YR 1/5</td>
<td>100</td>
<td></td>
<td>Few small ox-frost zones, (sand)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clay</td>
</tr>
</tbody>
</table>

1. *Frequency:* F=Few, MA=Moderately Abundant, C=Common
2. *Type:* C=Concentration, D=Deposition, RM=Reduced Matrix, CS=Covered or Coated Sand Grains
3. *Location:* PL=Pore Lining, M=Matrix

Hydric Soil Indicators
- Histosol (A1)
- Histie Epipedon (A2)
- Black Histie (A3)
- Hydrogen Sulphide (A4)
- Stratified Layers (A5)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Dark Surface (S7)

Problematic Hydric Soil Indicators
- 2 cm Muck (A10)
- Coastal Prairie Redox (A16)
- 5 cm Mucky Peat or Peat (S3)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Iron-Manganese Massee (F12)
- Pediment Floodplain Soils (F19)
- Mesoic Spodic (T6)
- Red Parent Material (S22)
- Very Shallow Dark Surface (TF2)

Restrictive Layer (if observed)
- **Type:** ________
- **Depth (inches):** ________

Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic.

Remarks: Mudly soils with edon of a clay layer @ 18". Other data points had large/more evident mottling.

Wetland Determination

- **Hydrophytic Vegetation Present?** Yes No
- **Hydric Soil Present?** Yes No
- **Wetland Hydrology Present?** Yes No
- **Is this Sampling Point Within a Wetland?** Yes No
- **Is the wetland mapped in the NWI?** Yes No
- **Is the wetland a mapped state wetland?** Yes No
- **Hydrologic Connectivity to Off-site Wetlands?** Yes No N/A
- **Does Any Part of this Delineated Wetland/Stream Extend Past the Flagged Boundary?** Yes No N/A
- **Is this Wetland Potentially Isolated?** Yes No N/A
- **If yes, indicate classification**
- **If yes, indicate wetland ID** AK-14
DATA FORM

ROUTINE WETLAND DETERMINATION

Project Number: 60345076
Applicant: USDA

Data Point ID (i.e. 2W @ Wet. C): UP-2
Nearest Flag to Data Point: [Blank]

Investigator(s): J. Lyons

Landform: Hillside/Seep Toc of Slope Depressional Riparian

Landscape Position: Flat Undulating Sloping Concave

Is the area a potential problem area? Yes / No
Is the site significantly disturbed? Yes / No
Approximate Slope (%): 1/2

Are climatic/hydrologic conditions on the site typical for this time of year? Yes / No
Do Normal Circumstances exist on site? Yes / No

Hydrology

Primary Indicators (min. - 1 required; check all that apply)
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A5)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)
- Water-Stained Leaves (B9)
- Aquatic Fauna (B11)
- Marl Deposits (B15)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain in Remarks)

Secondary Indicators (min. - 2 required)
- Surface Soil Cracks (B6)
- Drainage Patterns (B10)
- Most Trifl Limes (B15)
- Dry-Season Water Table (C2)
- Cityfsh Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Stunted or Stressd Plants (D-1)
- Geomorph Posn (D2)
- Shallow Aquif (D3)
- Microtopographic Relief (D4)
- FAC-Neutral Test (D5)

Field Observations

Inundation Present? Yes / No
Saturated Conditions? Yes / No

Depth of Water (inches):
Depth to Sat. Soil (inches):
Depth to Water (inches):

Stream Characteristics

Stream type: Perennial
Morphology: Bank Width
Stream Gradient: Gentle
Substrate: Bed Rock
Flow: No Flow

Intermittent
Stream Width
Moderate
Boulder
Gentle

Water Depth
Steep
Cobble
Moderate

Adjacent Community Type: [Blank]

Instream Conditions:
- Obscurred Banks
- Deep Pools
- Overhanging Vegetation
- Well Defined Banks
- Riffles & Pools
- Other
- Eroded/Underrcut Bank

Remarks: Adapted to the north and eastern portion of Wet. UP-1.
Vegetation

Tree Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>Number</th>
<th>Species</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sapling/Shrub Stratum (Plot size: 15-foot radius)

<table>
<thead>
<tr>
<th>Number</th>
<th>Species</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fraxinus</td>
<td>15</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Herb Stratum (Plot size: 5-foot radius)

<table>
<thead>
<tr>
<th>Number</th>
<th>Species</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fraxinus</td>
<td>15</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>Taraxacum officinale</td>
<td>5</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>Achillea millefolium</td>
<td>10</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>Solidago canadensis</td>
<td>10</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Woody Vine Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>Number</th>
<th>Species</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dominance Test worksheet:

- Number of Dominant Species That Are OBL, FACW, or FAC: __________ (A)
- Total Number of Dominant Species Across All Strata: __________ (B)
- Percent of Dominant Species That Are OBL, FACW, or FAC: __________ (A/B)

Prevalence Index worksheet:

- Total % Cover of: Multiply by:
 - OBL species: \(x_1 \)
 - FACW species: \(x_2 \)
 - FAC species: \(x_3 \)
 - FACU species: \(x_4 \)
 - UPL species: \(x_5 \)

<table>
<thead>
<tr>
<th>Column Totals: (A)</th>
<th>(B)</th>
</tr>
</thead>
</table>

Prevalence Index = \(B/A \)

Hydrophytic Vegetation Indicators:

- _Rapid Test for Hydrophytic Vegetation_
- _Dominance Test >60%_
- _Prevalence Index is >0.0_
- _Morphological Adaptations" (provide supporting data in remarks)_
- _Problematic Hydrophytic Vegetation" (explain in remarks)_

Definitions of Vegetation Strata:

- **Tree** - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
- **Sapling/shrub** - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.
- **Herb** - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
- **Woody vine** - All woody vines greater than 3.28 ft in height.

Remarks:

- "seems to be edge of succession field"
Soils

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Depth (inches)	Color (moist)	% Color (moist)	Redux Features	Type	Loc
0-16	10YR 3/3	100			
16-20	10YR 5/8	100			

Frequency: F=Few, MA=Moderately Abundant, C=Common

Type: C=Concentration, D=Deposition, RM=Reduced Matrix, CS=Covered or Coated Sand Grains

Location: PL=Pore Lining, M=Matrix

Hydric Soil Indicators

- Histosol (A1)
- Histic Epipedon (A2)
- Black Hist (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Dark Surface (S7)

Problematic Hydric Soil Indicators

- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)

Restrictive Layer (if observed)

Type: __________________

Depth (inches): ___________________

Wetland Determination

- **Hydrophytic Vegetation Present?** Yes ☐ No ☐
- **Hydric Soil Present?** Yes ☐ No ☐
- **Wetland Hydrology Present?** Yes ☐ No ☐
- **Is this Sampling Point Within a Wetland?** Yes ☐ No ☐
- **Is the wetland mapped in the NWI?** Yes ☐ No ☐
- **Is the wetland a mapped state wetland?** Yes ☐ No ☐

Hydrologic Connectivity to Off-site Wetlands? Yes ☐ No ☐

Does Any Part of this Delineated Wetland/Stream Exceed Past the Flagged Boundary? Yes ☐ No ☐

Is this Wetland Potentially Isolated? Yes ☐ No ☐

If yes, indicate classification: __________________

If yes, indicate wetland ID: __________________
DATA FORM
ROUTINE WETLAND DETERMINATION
Northcentral and Northeast Regional Supplement

Project Number: 60345076
Applicant: USDA

Data Point ID (i.e. 2W@Wat. G): W-3

Investigator(s): Lyons

Landform: Hillside Steep Toe of Slope Depressional Riparian

Landscape Position: Flat Undulating Sloping Convex Concave

Are climatic/hydrologic conditions on the site typical for this time of year? Yes No

Do Normal Circumstances exist on site? Yes No

Hydrology

Primary Indicators (min. - 1 required; check all that apply)
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Depots (B2)
- Drift Depots (B3)
- Algal Mat or Crust (B4)
- Iron Depots (B5)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)
- Water-Stained Leaves (B9)
- Aquatic Fauna (B13)
- Mole Deposits (B15)
- Oxidized Rhizospheres on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recently Reduced in Tilled Soils (C8)
- Thin Muck Surface (C7)
- Other [Explain in Remarks]

Secondary Indicators (min. - 2 required)
- Surface Soil Cracks (B6)
- Drainage Patterns (B10)
- Mass Tine Lines (B16)
- Dry-Season Water Table (C2)
- Clayfish Burrows (C8)
- Stunted or Stressed Plants (D-1)
- Geomorphic Position (D2)
- Shallow Aquifer (D3)
- Microtopographic Relief (D4)
- FAC-Neutral Test (D5)

Field Observations
Inundation Present? Yes No
Saturated Conditions? Yes No

Depth of Water (inches): 0
Depth to Sot. Soil (inches): 1-6
Depth to Water (inches): 1-6

Stream Characteristics

Stream type: Perennial
Morphology: Bank Width
Stream Gradient: Bed Rock
Substrate: Sand
Flow: No Flow

Intermittent
Stream Width Moderate
Water Depth Steep

Adjacent Community Type:

Instream Conditions:
- Obscurred Banks
- Deep Pools
- Overhanging Vegetation
- Well Defined Banks
- Riffles & Pools
- Vegetated Channel
- Eroded/Undershot Bank
- Other

Remarks
Small wetland on southeast corner of site extending to southeast.
Vegetation

Tree Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Number of Dominant Species That Are OBL, FACW, or FAC:</th>
<th>(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Number of Dominant Species Across All Strata:</td>
<td>(B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Percent of Dominant Species That Are OBL, FACW, or FAC:</td>
<td>(A/B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prevalence Index Worksheet:</td>
<td>Multiply by:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total % Cover of:</td>
<td>OBL species $\times 1 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FACW species $\times 2 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FAC species $\times 3 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FACU species $\times 4 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UPL species $\times 5 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Column Totals:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prevalence Index $= \frac{B}{A}$ =</td>
<td></td>
</tr>
</tbody>
</table>

Sapling/Shrub Stratum (Plot size: 15-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Number of Dominant Species That Are OBL, FACW, or FAC:</th>
<th>(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Number of Dominant Species Across All Strata:</td>
<td>(B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Percent of Dominant Species That Are OBL, FACW, or FAC:</td>
<td>(A/B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prevalence Index Worksheet:</td>
<td>Multiply by:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total % Cover of:</td>
<td>OBL species $\times 1 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FACW species $\times 2 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FAC species $\times 3 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FACU species $\times 4 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UPL species $\times 5 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Column Totals:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prevalence Index $= \frac{B}{A}$ =</td>
<td></td>
</tr>
</tbody>
</table>

Herb Stratum (Plot size: 5-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Number of Dominant Species That Are OBL, FACW, or FAC:</th>
<th>(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Number of Dominant Species Across All Strata:</td>
<td>(B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Percent of Dominant Species That Are OBL, FACW, or FAC:</td>
<td>(A/B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prevalence Index Worksheet:</td>
<td>Multiply by:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total % Cover of:</td>
<td>OBL species $\times 1 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FACW species $\times 2 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FAC species $\times 3 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FACU species $\times 4 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UPL species $\times 5 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Column Totals:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prevalence Index $= \frac{B}{A}$ =</td>
<td></td>
</tr>
</tbody>
</table>

Woody Vine Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Number of Dominant Species That Are OBL, FACW, or FAC:</th>
<th>(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Number of Dominant Species Across All Strata:</td>
<td>(B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Percent of Dominant Species That Are OBL, FACW, or FAC:</td>
<td>(A/B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prevalence Index Worksheet:</td>
<td>Multiply by:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total % Cover of:</td>
<td>OBL species $\times 1 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FACW species $\times 2 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FAC species $\times 3 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FACU species $\times 4 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UPL species $\times 5 = $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Column Totals:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prevalence Index $= \frac{B}{A}$ =</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

Small species increase. Seems to be in a
recovery stage.

US Army Corps of Engineers
Northcentral and Northeast Region - Interim Version
Project Number: 60345076
Applicant: USDWA
Sampling Date: 28 April 2015
Data Point ID: 103
Soil Map Unit: Canandaigua silt loam

Soils
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>Frequency</th>
<th>Type</th>
<th>Loc</th>
<th>Texture, Structure, Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-14</td>
<td>10YR 2/2</td>
<td>90</td>
<td>10YR 2/2</td>
<td>F</td>
<td>c</td>
<td>m</td>
<td>Silty clay</td>
</tr>
</tbody>
</table>

*Frequency: F=Few, MA=Moderately Abundant, C=Common
*Type: C=Concentration, D=Deposition, RM=Reduced Matrix, CS=Covered or Coated Sand Grains
*Location: PL=Pore Lining, M=Matrix

Hydric Soil Indicators
- Histosol (A1)
- Histic Epipod (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Leaky Mucky Mineral (F1)
- Leaky Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- 2 cm Muck (A10)
- Coast Prairie Redox (A16)
- 5 cm Mucky Peat or Peat (S3)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Iron-Manganese Mases (F12)
- Piedmont Floodplain Soils F19
- Musc Spodic (TA6)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)
- Other (Explain in remarks)

Problematic Hydric Soil Indicators
- Restrictive Layer (If observed)
 - Type: Rock
 - Depth (inches): 14

Wetland Determination
Hydrophytic Vegetation Present? **Yes**
Hydric Soil Present? **Yes**
Wetland Hydrology Present? **Yes**
Is this Sampling Point Within a Wetland? **Yes**
Is the wetland mapped in the NW? **No**
Is the wetland a mapped state wetland? **No**
Hydrologic Connectivity to Off-site Wetlands? **No**
Does Any Part of this Delineated Wetland/Stream Extend Past the Flagged Boundary? **No**
Is this Wetland Potentially Isolated? **No**

Remarks: O horizon missing in spots. This area may have been impacted in the past. (?) may have node fill in lower horizons.
DATA FORM

Routine Wetland Determination

Northcentral and Northeast Regional Supplement

Project Number: 60345076
Applicant: USDA

Town: Wambrook
Sampling Date: 28 April 2015
County: Genesee
State: New York
Community: Upland

Data Point ID (i.e. 2W @ Wet. G): UP-3

Nearest Flag to Data Point:

Investigator(s):

Lyons

Landform:
- Hillside
- Seep
- Toe of Slope
- Depressional
- Riparian

Landscape Position:
- Flat
- Undulating
- Sloping
- Convex
- Concave

Level Area:

Is the area a potential problem area?
- Yes
- No

Is the site significantly disturbed?
- Yes
- No

Approximate Slope (%): 1.3

Do normal circumstances exist on site?
- Yes
- No

Hydrology

Primary Indicators (min. - 1 required; check all that apply):
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Alluvial Mound or Crust (B4)
- Iron Deposits (B5)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)
- Water-Stained Leaves (59)
- Aquatic Fauna (B19)
- Muddy Deposits (B15)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain in Remarks)

Secondary Indicators (min. - 2 required):
- Surface Soil Cracks (56)
- Drainage Patterns (B10)
- Moss Titim Lines (B16)
- Dry-Season Water Table (C2)
- Clayish Siltstone (C6)
- Saturation Visible on Aerial Imagery (C9)
- Stunted or Stressed Plants (D-1)
- Geomorphic Position (D2)
- Shallow Aquifer (D3)
- Microtopographic Relief (D4)
- FAC-Neutral Test (D5)

Field Observations

Inundation Present?
- Yes
- No

Saturated Conditions?
- Yes
- No

Depth of Water (inches):

Depth to Sat. Soil (inches):

Depth to Water (inches):

Stream Characteristics

<table>
<thead>
<tr>
<th>Stream type:</th>
<th>Morphology:</th>
<th>Stream Gradient:</th>
<th>Substrate:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perennial</td>
<td>Bank Width</td>
<td>Gentle</td>
<td>Bed Rock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sand</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermittent</th>
<th>Stream Width</th>
<th>Moderate</th>
<th>Boulder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Depth</th>
<th>Steep</th>
<th>Cobble</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heavy</td>
</tr>
</tbody>
</table>

Flow:
- No Flow
- Gentle
- Moderate

Adjacent Community Type:

Instream Conditions:
- Deep Pools
- Riffles & Pools
- Overhanging Vegetation
- Vegetated Channel
- Other

Remarks:

Upland area north of W3 in successional growth field.
Vegetation

Tree Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th></th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Dominance Test worksheet:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td>Number of Dominant Species That Are OBL, FACW, or FAC: (A)</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td>Total Number of Dominant Species Across All Strata: (B)</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td>Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Total Cover

Sapling/Shrub Stratum (Plot size: 15-foot radius)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Total Cover

Herb Stratum (Plot size: 5-foot radius)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Taraxacum officinale</td>
<td>20</td>
<td>Y</td>
</tr>
<tr>
<td>2.</td>
<td>Solidago canadensis</td>
<td>10</td>
<td>Y</td>
</tr>
<tr>
<td>3.</td>
<td>Phleum pratense</td>
<td>20</td>
<td>Y</td>
</tr>
<tr>
<td>4.</td>
<td>Trifolium spp.</td>
<td>5</td>
<td>N</td>
</tr>
</tbody>
</table>

= Total Cover

Woody Vine Stratum (Plot size: 30-foot radius)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Total Cover

Hydrophytic Vegetation Indicators:
- Rapid Test for Hydrophytic Vegetation
- Dominance Test ≥50%
- Prevalence Index is ≥3.0
- Morphological Adaptations * (provide supporting data in remarks)
- Problematic Hydrophytic Vegetation * (explain in remarks)
- Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.

Definitions of Vegetation Strata:
- Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
- Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.
- Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
- Woody vines - All woody vines greater than 3.28 ft in height.

Remarks

- Riverbank (level)
- Field
- Some dead veg.
- [solidago] present
- Bare ground
Soils

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>Frequency</th>
<th>Type</th>
<th>Loc.</th>
<th>Texture, Structure, Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-16</td>
<td>10YR 3/3</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandy loam with few small rocks</td>
</tr>
</tbody>
</table>

1 Frequency: F=Few, MA=Moderately Abundant, C=Common
2 Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains
3 Location: FL=Por Lining, M=Matrix

Hydric Soil Indicators

- Histosol (A1)
- Histose Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulphide (A4)
- Stratified Layers (A5)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S6)
- Stripped Matrix (S6)
- Dark Surface (S7)

Problematic Hydric Soil Indicators

- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)

Restrictive Layer (if observed)

- Type: Rock
- Depth (inches): 16

Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic.

Remarks

Upland soil with old as-field.

Wetland Determination

- Hydrophytic Vegetation Present? Yes No
- Hydric Soil Present? Yes No
- Wetland Hydrology Present? Yes No
- Is this Sampling Point Within a Wetland? Yes No
- Is the wetland mapped in the NWI? Yes No
- Is the wetland a mapped state wetland? Yes No
- Hydrologic Connectivity to Off-site Wetlands? Yes No N/A
- Has Any Part of this Delineated Wetland/Stream Extend Past the Flagged Boundary? Yes No N/A
- Is this Wetland Potentially Isolated? Yes No N/A
- If yes, indicate classification
- If yes, indicate wetland ID

US Army Corps of Engineers
Northcentral and Northeast Region - Interim Version
DATA FORM

ROUTINE WETLAND DETERMINATION

Project Number: 60345076

Applicant: USDA

Nearest Flag to Data Point: 0.4

Investigator(s): D. Lyons

Is the area a potential problem area? Yes

Is the site significantly disturbed? Yes

Approximate Slope (%): 1-2

Landform: Hillside/Slope Toe of Slope Riparian

Landscape Position: Flat Undulating Sloping Convex Concave

Are climatic/hydrologic conditions on the site typical for this time of year? Yes

Do Normal Circumstances exist on site? Yes

Hydrology

Primary Indicators (min. - 1 required; check all that apply)
- [X] Surface Water (A1)
- [X] High Water Table (A2)
- [X] Saturation (A3)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)
- Water-Stained Leaves (B9)
- Aquatic Fauna (B13)
- Muck Deposits (B15)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain In Remarks)

Secondary Indicators (min. - 2 required)
- Surface Soil Cracks (B6)
- Drainage Patterns (B10)
- Moss Trimmings (B16)
- Dry-Sassy Water Table (C2)
- Grayish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Stunted or Stressed Plants (D-1)
- Geomorphic Position (D2)
- Shallow Aquitard (D3)
- Microtopographic Relief (D4)
- FAC-Neutral Test (D5)

Field Observations

Inundation Present? Yes No

Saturated Conditions? Yes No

Depth of Water (inches):

Depth to Sat. Soil (inches):

Depth to Water (inches):

Very wet in western portion

Stream Characteristics

Stream type: Perennial

Morphology: Bank Width

Stream Gradient: Steep

Substrate: Bed Rock Sand Boulder Silt Cobble Clay Gravel

Flow: No Flow

Next Stream Width: Moderate

Water Depth:

Adjacent Community Type:

Instream Conditions:

- [X] Obscured Banks
- [] Well Defined Banks
- [X] Eroded/Undercut Bank

- [X] Deep Pools
- [X] Riffles & Pools

- [] Overhanging Vegetation
- Vegetated Channel
- Other

Remarks

*W*4 is separated from *W*2 by a hard gravel access road.

Small section of fence is PPO.

Some open water areas.

Large open areas.
<table>
<thead>
<tr>
<th>Vegetation</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Dominance Test worksheet:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree Stratum (Plot size: 30-foot radius)</td>
<td></td>
<td></td>
<td></td>
<td>Number of Dominant Species That Are OBL, FACW, or FAC: (A)</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td>Total Number of Dominant Species Across All Strata: (B)</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td>Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td>Prevalence Index Worksheet:</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td>Total % Cover of: Multiply by:</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td>OBL species: x 1 =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FACW species: x 2 =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FAC species: x 3 =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FACU species: x 4 =</td>
</tr>
<tr>
<td>Sapling/Shrub Stratum (Plot size: 15-foot radius)</td>
<td></td>
<td></td>
<td></td>
<td>UPL species: x 5 =</td>
</tr>
<tr>
<td>1. Salix spp.</td>
<td>5</td>
<td>N</td>
<td>FACW</td>
<td>Column Totals: (A)</td>
</tr>
<tr>
<td>2. Comus griseus</td>
<td>5</td>
<td>N</td>
<td>FACW</td>
<td>(B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>= Total Cover</td>
</tr>
<tr>
<td>Herb Stratum (Plot size: 5-foot radius)</td>
<td></td>
<td></td>
<td></td>
<td>Hydrophytic Vegetation Indicators:</td>
</tr>
<tr>
<td>1. Typha spp. (latifolia)</td>
<td>70</td>
<td>Y</td>
<td>OBL</td>
<td></td>
</tr>
<tr>
<td>2. Carex sp. (juvenal)</td>
<td>5</td>
<td>N</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>= Total Cover</td>
</tr>
<tr>
<td>Woody Vine Stratum (Plot size: 30-foot radius)</td>
<td></td>
<td></td>
<td></td>
<td>Definitions of Vegetation Strata:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Woody vines - All woody vines greater than 3.28 ft in height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Remarks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>US4 interior has cattails - of fringe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>west side has open water to ~10 ft.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sample area within edge of cattail area.</td>
</tr>
</tbody>
</table>
Project Number: 60345076
Applicant: USDVA
Sampling Date: 28 April 2015
Data Point ID: W9
Soil Map Unit: Cakendaigren 10×8 (4)

Soils

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>Frequency</th>
<th>Type</th>
<th>Loc</th>
<th>Texture, Structure, Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>10% R 2½</td>
<td>100</td>
<td>10% R 5/6</td>
<td></td>
<td></td>
<td></td>
<td>Muck</td>
</tr>
<tr>
<td>3 - 12</td>
<td>10% R 2½</td>
<td>90</td>
<td>10% R 5/6</td>
<td>f</td>
<td>c</td>
<td>m</td>
<td>Silty loam with very little sand</td>
</tr>
<tr>
<td>10 - 20</td>
<td>10% R 2½</td>
<td>90</td>
<td>10% R 5/6</td>
<td>f</td>
<td>c</td>
<td>m</td>
<td>Rill error</td>
</tr>
</tbody>
</table>

1. Frequency: F=Few, MA=Moderately Abundant, C=Common
2. Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains
3. Location: PL=Pore Lining, M=Matrix

Hydric Soil Indicators
- Histosol (A1)
- Histic Epipedon (A2)
- Black Hist (A3)
- K Hydrogen Sulphide (A4)
- Stratified Layers (A5)
- Depleted Below Dark Surface (A11)
- Thin Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- K Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)

Problematic Hydric Soil Indicators
- 2 cm Muck (A10)
- Coast Prairie Redox (A16)
- 5 cm Mucky Peat or Peat (S3)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S6)
- Iron-Manganese Masses (F12)
- Piedmont Floodplain Soils (F19)
- Mesic Spodic (T46)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)
- Other (Explain in remarks)

Restrictive Layer (if observed)
- Type: _____
- Depth (inches): _____

Wetland Determination

- Hydrophytic Vegetation Present? **Yes** **No**
- Hydric Soil Present? **Yes** **No**
- Wetland Hydrology Present? **Yes** **No**
- Is this Sampling Point Within a Wetland? **Yes** **No**

- If yes, indicate classification: ___________
- If yes, indicate wetland ID: ___________

- Hydrologic Connectivity to Off-site Wetlands? **Yes** **No** N/A
- Does Any Part of this Delineated Wetland Stream Extend Past the Flagged Boundary? **Yes** **No** N/A
- Is this Wetland Potentially Isolated? **Yes** **No** N/A

- Remarks:

 a large amount of leaf litter from cattails on surface with saturated soils - strong odor.
Data Form

Routine Wetland Determination

- **Project Number:** 60345076
- **Applicant:** USDA
- **Town:** Pembroke
- **County:** Genesee
- **State:** New York
- **Community:** Upland
- **Sampling Date:** 28 April 2015
- **Data Point ID:** UP-4
- **Nearest Flag to Data Point:**

Investigator(s): J. Lyons

Landform:
- Hillside/Seep
- Toe of Slope
- Depressional
- Riparian

Landscape Position:
- Flat
- Undulating
- Sloping
- Convex
- Concave

Are climatic/hydrologic conditions on the site typical for this time of year? Yes / No

Do Normal Circumstances exist on site? Yes / No

Hydrology

Primary Indicators (min. 1 required; check all that apply):
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (A4)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)

Secondary Indicators (min. 2 required):
- Water-Stained Leaves (B9)
- Aquatic Fauna (B13)
- Mort Deposits (B16)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain in Remarks)

Field Observations

- **Inundation Present?** Yes / No
- **Saturated Conditions?** Yes / No

Depth of Water (inches):

Depth to Sat. Soil (inches):

Depth to Water (inches):

Stream Characteristics

- **Stream type:** Perennial
- **Morphology:** Bank Width
- **Gradient:** Gentle
- **Substrate:** Bed Rock
- **Flow:** No Flow

- **Stream type:** Intermittent
- **Stream Width:** Moderate
- **Water Depth:** Steep
- **Boulder:**
- **Clay:**
- **Gravel:**
- **Flow:** Gentle

Adjacent Community Type:

Intersream Conditions:
- Obscured Banks
- Deep Pools
- Overhanging Vegetation
- Well Defined Banks
- Ripples & Pools
- Vegetated Charcoal
- Eroded/Undercut Bank
- Other

Remarks:

Upland reversion field, south of W. W. Dead veg.
Vegetation

Tree Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dominance Test worksheet:

- Number of Dominant Species That Are OBL, FACW, or FAC: _____ (A)
- Total Number of Dominant Species Across All Strata: _____ (B)
- Percent of Dominant Species That Are OBL, FACW, or FAC: _____ (A/B)

Prevalence index worksheet:

- Total % Cover of: Multiply by:
 - OBL species \(\times 1 = \)
 - FACW species \(\times 2 = \)
 - FAC species \(\times 3 = \)
 - FACU species \(\times 4 = \)
 - UPL species \(\times 5 = \)
- Column Totals: (A)
- Total Cover
- Prevalence Index = B/A =

Sapling/Shrub Stratum (Plot size: 15-foot radius)

<table>
<thead>
<tr>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Herb Stratum (Plot size: 5-foot radius)

<table>
<thead>
<tr>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hydrophytic Vegetation Indicators:

- Rapid Test for Hydrophytic Vegetation
- Dominance Test >50%
- Prevalence Index is ≤3.0*
- Morphological Adaptations* (provide supporting data in remarks)
- Problematic Hydrophytic Vegetation* (explain in remarks)

Definitions of Vegetation Strata:

- Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height
- Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall
- Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall
- Woody vines - All woody vines greater than 3.28 ft in height

Remarks

<table>
<thead>
<tr>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Woody Vine Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Total Cover
Soils

Profile Description: Describe the depth needed to document the indicator or confirm the absence of indicators.

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>Redux Features</th>
<th>Frequency</th>
<th>Type</th>
<th>Loc</th>
<th>Texture, Structure, Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandy Loam with few rocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Z1-4 f. Bw</td>
</tr>
</tbody>
</table>

1. **Frequency:** F= Few, MA= Moderately Abundant, C= Common
2. **Type:** C= Concentration, D= Depletion, RM= Reduced Matrix, CS= Covered or Coated Sand Grains
3. **Location:** PL= Pore Lining, M= Matrix

Hydric Soil Indicators
- Histosol (A1)
- Histic Epipedon (A2)
- Black Hist (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5)
- Depleted Below Dark Surface (A11)
- Thin Dark Surface (S9)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depressed Matrix (F3)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Iron-Manganese Massos (F12)
- Piedmont Floodplain Soils (F18)
- Mucic Spodic (TA6)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)
- Other (Explain in remarks)

Problematic Hydric Soil Indicators
- 2 cm Muck (A10)
- Coast Prairie Redox (A16)
- 5 cm Mucky Peat or Peat (S3)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S6)
- Iron-Manganese Masses (F12)
- Piedmont Floodplain Soils (F18)
- Mucic Spodic (TA6)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)
- Other (Explain in remarks)

Restrictive Layer (If observed)
- Type: ____________________________
- Depth (inches): ____________________

Remarks
Typical as field soil upslope from Lt.
Western side is residential yards.

Wetland Determination

- **Hydrophytic Vegetation Present?** Yes No
- **Hydric Soil Present?** Yes No
- **Wetland Hydrology Present?** Yes No
- **Is this Sampling Point Within a Wetland?** Yes No
- **Does Any Part of this Delineated Wetland/Stream Extend Past the Flagged Boundary?** Yes No
- **Is this Wetland Potentially Isolated?** Yes No

- **Is the wetland mapped in the NWI?** Yes No
- **Is the wetland a mapped state wetland?** Yes No

If yes, indicate classification ___________
If yes, indicate wetland ID ___________
DATA FORM
ROUTINE WETLAND DETERMINATION
Nonstructural and Northeastern Regional Supplement

Project Number: 60345076
Applicant: USDA

Data Point ID (i.e. 2W08Wet. G): W5
Nearst Flag to Data Point: J. Lyons

Investigator(s): J. Lyons

Landform: Hillside/Steep Toe of Slope Depressional Riparian
Landscape Position: Flat Undulating Sloping Convex Concave
Are climatic/hydrologic conditions on the site typical for this time of year? Yes No
Do Normal Circumstances exist on site? Yes No

Hydrology
Primary Indicators (min. - 1 required; check all that apply)
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Curtain (B4)
- Iron Deposits (B5)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)
- Water-Stained Leaves (B9)
- Aquatic Fauna (B13)
- Mollusk Deposits (B15)
- Hydrogen Sulphide Odor (C1)
- Oxidized Rhizospheres on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain in Remarks)

Secondary Indicators (min. - 2 required)
- Surface Soil Cracks (B6)
- Drainage Patterns (B10)
- Moss Trim Lines (B16)
- Dry-Season Water Table (C2)
- Crayfish Burrows (C8)
- Stunted or Strressed Plants (D-1)
- Geomorphic Position (D2)
- Shallow Aquifer (D3)
- Microtopographic Relief (D4)
- FAC-Neutral Test (D5)

Field Observations
Inundation Present? Yes No Saturated Conditions? Yes No Depth of Water (inches): 0.5-1.2 in spots
Depth to Sat. Soil (inches): 0
Depth to Water (inches):

Stream Characteristics
Stream type: Perennial Intermittent
Morphology: Bank Width
Stream Gradient: Moderate
Substrate: Bed Rock
Flow: No Flow

Water Depth: Sleep
Adjoacent Community Type:

Instream Conditions:
- Obscured Banks
- Well Defined Banks
- Eroded/Undercut Bank
- Deep Pools
- Riffles & Pools
- Overhanging Vegetation
- Vegetated Channel
- Other

Remarks
W9 is a 1990's complex with a drainage channel leading to a smaller one which drains south towards I-90 into a major highway drainage. Open water areas.

US Army Corps of Engineers
Noncentral and Northeast Region - Interim Version
Vegetation

Tree Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>Abs. % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Dominance Test worksheet: |
|--------------------------|--------------------------|
| Number of Dominant Species That Are OBL, FACW, or FAC: | (A) |
| Total Number of Dominant Species Across All Strata: | (B) |
| Percent of Dominant Species That Are OBL, FACW, or FAC: | (A/B) |

Prevalence Index worksheet:

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBL species</td>
<td></td>
<td>x 1</td>
</tr>
<tr>
<td>FACW species</td>
<td></td>
<td>x 2</td>
</tr>
<tr>
<td>FAC species</td>
<td></td>
<td>x 3</td>
</tr>
<tr>
<td>FACU species</td>
<td></td>
<td>x 4</td>
</tr>
<tr>
<td>UPL species</td>
<td></td>
<td>x 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column Totals:</th>
<th>(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence Index = B/A =</td>
<td></td>
</tr>
</tbody>
</table>

Sapling/Shrub Stratum (Plot size: 15-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>Abs. % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Alnus incana</td>
<td>15</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>2. Cornus alternifolia</td>
<td>10</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>3. Acer rubrum</td>
<td>2</td>
<td>N</td>
<td>FAC</td>
</tr>
</tbody>
</table>

| 4. | | | |
| 5. | | | |

| 27 = Total Cover |

Hydrophytic Vegetation Indicators:

- Rapid Test for Hydrophytic Vegetation
- Dominance Test >50%
- Prevalence Index > 0.7
- Morphological Adaptations (provide supporting data in remarks)
- Problematic Hydrophytic Vegetation (explain in remarks)
- Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.

Definitions of Vegetation Strata:

- **Tree** - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
- **Sapling/Shrub** - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.
- **Herb** - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
- **Woody vines** - All woody vines greater than 3.28 ft in height.

Remarks

Small amounts of veg. present. FA on water surface & moss on logs.
Soils

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>Frequency</th>
<th>Type</th>
<th>Loc</th>
<th>Texture, Structure, Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>10 yr 2/1</td>
<td>100</td>
<td>10 yr 2/6</td>
<td>1</td>
<td>c</td>
<td>m</td>
<td>Muck</td>
</tr>
<tr>
<td>4-16</td>
<td>10 yr 2/2</td>
<td>95</td>
<td>10 yr 2/6</td>
<td>1</td>
<td>c</td>
<td>m</td>
<td>Silky loam, silt, some sand, some silt, silt clays</td>
</tr>
<tr>
<td>16-20</td>
<td>10 yr 2/2</td>
<td>90</td>
<td>10 yr 2/6</td>
<td>1</td>
<td>c</td>
<td>m</td>
<td>Silty loam, some clay</td>
</tr>
</tbody>
</table>

- **Frequency:** F=Few, MA=Moderately Abundant, C=Common
- **Type:** C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains
- **Location:** PL=Pore Lining, M=Matrix

Hydric Soil Indicators

- Histosol (A1)
- Hiello Epipedon (A2)
- Black Hist (A3)
- X Hydrogen Sulphide (A4)
- Stratified Layers (A5)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F9)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Redox Depressions (F8)

Problematic Hydric Soil Indicators

- 2 cm Muck (A10)
- X Coast Prairie Redox (A16)
- 5 cm Mucky Peat or Peat (S3)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Iron-Manganese Masses (F12)
- Piedmont Floodplain Soils (F19)
- X Melic Spodic (TA6)
- Red Parent Material (TF29)
- Very Shallow Dark Surface (TF12)
- Other (Explain in remarks)

Restrictive Layer (if observed)

- **Type:**
- **Depth (inches):**

Remarks

Varied degree of open water; mucky soils; hummocky terrain in Profiles.

Wetland Determination

- **Hydrophytic Vegetation Present?** Yes No
- **Hydric Soil Present?** Yes No
- **Wetland Hydrology Present?** Yes No
- **Is this Sampling Point Within a Wetland?** Yes No
- **Is the wetland mapped in the NWI?** Yes No
- **Is the wetland a mapped state wetland?** Yes No
- **Hydrologic Connectivity to Off-site Wetlands?** Yes No N/A
- **Does Any Part of this Delineated Wetland/Stream Extend Past the Flagged Boundary?** Yes No N/A
- **Is this Wetland Potentially Isolated?** Yes No N/A

If yes, indicate classification. If yes, indicate wetland ID.
DATA FORM
ROUTINE WETLAND DETERMINATION
Northcentral and Northeast Region Supplement.

Project Number: 6034507C
Town: Pendebroke
County: Genessee
State: New York
Community: UPLANDS
Data Point ID (i.e. 2W@Wet. G): UP-S
Nearest Flag to Data Point:

Investigator(s): J. Lyons

Landform: Hillside/Seep Toe of Slope Depressional Riparian
Landscape Position: Flat Undulating Sloping Convex Concave

Is the area a potential problem area? Yes No
Is the site significantly disturbed? Yes No
Are climatic/hydrologic conditions on the site typical for this time of year? Yes No
Approximate Slope (%): 1-2

Do Normal Circumstances exist on site? Yes No

Hydrology

Primary indicators (min. - 1 required; check all that apply)
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)
- Water-Stained Leaves (B9)
- Aquatic Fauna (B13)
- Marsh Depositions (B15)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain in Remarks)

Secondary indicators (min. - 2 required)
- Surface Soil Cracks (B6)
- Drainage Patterns (B10)
- Moss Trim Lines (B10)
- Dry-Season Water Table (C2)
- Craggly Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Stunted or Stressed Plants (D-1)
- Geomorphic Position (D2)
- Shallow Aquitard (D3)
- Microtopographic Relief (D4)
- FAC-Neutral Test (D5)

Field Observations
Inundation Present? Yes No
Saturated Conditions? Yes No
Depth of Water (inches):
Depth to Sat. Soil (inches):
Depth to Water (inches):

Stream Characteristics

Stream type: Perennial Intermitent
Morphology: Bank Width Gentle
Stream Gradient: Moderate
Substrate: Bed Rock Boulder Cobble Gravel
Flow: No Flow Gentle

Water Depth: Steep

Adjacent Community Type:

Instream Conditions:
- Obscured Banks
- Deep Pools
- Overhanging Vegetation
- Well Defined Banks
- Riverbeds & Pools
- Vegetated Channel
- Eroded/Undercut Bank
- Other

Remarks
Upland area to south west of wet.

US Army Corps of Engineers
Northcentral and Northeast Region - Interim Version
Vegetation

Tree Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dominance Test worksheet:

- Number of Dominant Species That Are OBL, FACW, or FAC: (A)
- Total Number of Dominant Species Across All Strata: (B)
- Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)

Prevalence Index worksheet:

- Total % Cover of:
- Multiply by:
 - OBL species: \(\times 1 = \)
 - FACW species: \(\times 2 = \)
 - FAC species: \(\times 3 = \)
 - FACU species: \(\times 4 = \)
 - UPL species: \(\times 5 = \)
- Column Total (A) (B)

Prevalence Index = \(B/A \)

Sapling/Shrub Stratum (Plot size: 15-foot radius)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Herb Stratum (Plot size: 5-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phleum pratense</td>
<td>20</td>
<td>Facu</td>
</tr>
<tr>
<td>Festu ssp.</td>
<td>30</td>
<td>Facu</td>
</tr>
<tr>
<td>Taraxacum officinale</td>
<td>5</td>
<td>Facu</td>
</tr>
<tr>
<td>Trifolium spp.</td>
<td>5</td>
<td>Facu</td>
</tr>
</tbody>
</table>

Hydrophytic Vegetation Indicators:

- Rapid Test for Hydrophytic Vegetation
- Dominance Test >50%
- Prevalence Index >0.5

Definitions of Vegetation Strata:

- Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
- Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.
- Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
- Woody vines - All woody vines greater than 3.28 ft in height.

Remarks

Total Cover

Woody Vine Stratum (Plot size: 30-foot radius)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Cover
Wetland Determination

- **Hydrophytic Vegetation Present?** Yes [] No []
- **Hydric Soil Present?** Yes [] No []
- **Wetland Hydrology Present?** Yes [] No []
- **Is this Sampling Point Within a Wetland?** Yes [] No []
- **Is the wetland mapped in the NWI?** Yes [] No []
- **Is the wetland a mapped state wetland?** Yes [] No []

- **Hydrologic Connectivity to Off-site Wetlands?** Yes [] No []
- **Does Any Part of this Delineated Wetland/Stream Extend Past the Flagged Boundary?** Yes [] No []
- **Is this Wetland Potentially Isolated?** Yes [] No []

- If yes, indicate classification:
- If yes, indicate wetland ID:

Soil Data

Soils

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>Redox Features</th>
<th>Frequency</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-17</td>
<td>Loam</td>
<td>10%</td>
<td>100%</td>
<td>100%</td>
<td>Sandy Loam with Rocks</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Frequency: F= Few, M= Moderately Abundant, C= Common
*Location: P= Pore Lining, M= Matrix

Hydric Soil Indicators

- Histosol (A1)
- Hielle Eppelton (A2)
- Black Hiologic (A3)
- Hydrogen Sulphide (A4)
- Stratified Layers (A5)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depression (F8)

Problematic Hydric Soil Indicators

- 2 cm Muck (A10)
- Coast Prairie Redox (A16)
- 5 cm Mucky Peat or Peat (S3)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Iron-Manganese Masses (F12)
- Piedmont Floodplain Soils (F18)
- Mesic Spodic (TA6)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)
- Other (Explain in remarks)

Restrictive Layer (if observed)

- **Type:** Rock
- **Depth (inches):** 17

Remarks

Upland area - somewhat maintained.
DATA FORM
RUTINE WETLAND DETERMINATION

PROJECT NUMBER: 60345076
Applicant: USDA

TOWN: Pembroke
COUNTY: Genesee
STATE: New York
COMMUNITY: PEm/1853

INVESTIGATOR(S): J. Lyons R. Runke

LANDFORM: Hillslope/Slope Toe of Slope (Depressional) Riparian

LANDSCAPE POSITION: Flat Undulating Sloping Convex Concave

Are climatic/hydrologic conditions on the site typical for this time of year? Yes No

Do Normal Circumstances exist on site? Yes No

HYDROLOGY

Primary Indicators (min. - 1 required; check all that apply)
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (A4)
- Sediment Deposits (A5)
- Drift Deposits (A6)
- Algal Mat or Crust (A7)
- Iron Deposits (A8)
- Inundation Visible on Aerial Imagery (A9)
- Sparsely Vegetated Concave Surface (A10)
- Water-Stained Leaves (B9)
- Aquatic Fauna (B13)
- Mollusks (B15)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain in Remarks)

Secondary Indicators (min. - 2 required)
- Surface Soil Cracks (B6)
- Drainage Patterns (B10)
- Moss Trim Lines (B16)
- Dry-Season Water Table (C2)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Stunted or Stressed Plants (D1-1)
- Geomorphic Position (D2)
- Shallow Aquitard (D3)
- Microtopographic Relief (D4)
- FAC-Neutral Test (D5)

FIELD OBSERVATIONS
Inundation Present? Yes No
Saturated Conditions? Yes No

Depth of Water (inches):
Depth to Sat. Soil (inches):

STREAM CHARACTERISTICS
Stream type: Perennial
Stream Morphology: Bank Width
Stream Gradient: Gentle
Substrate: Boulder
Flow: No Flow

Intermittent
Stream Width: Moderate
Water Depth: Sleep

Adjacent Community Type: N/A

Instream Conditions:
- Obscured Banks
- Well Defined Banks
- Eroded/Undercut Bank

FLOWING WATER
- Deep Pools
- Overhanging Vegetation
- Other

REMARKS
This wetland is on extension of a small pot-hole/ct wetland on the parcel edge. It is mostly PEm with a 1853 fringe of few trees in the SE corner. Historic drainage swales are present.
Vegetation

Tree Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Dominance Test worksheet:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number of Dominant Species That Are OBL, FACW, or FAC: (A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Number of Dominant Species Across All Strata: (B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)</td>
</tr>
</tbody>
</table>

Sapling/Shrub Stratum (Plot size: 15-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Prevalence Index = B/A =</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salix spp</td>
<td>10</td>
<td>y</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td>Coreopsis</td>
<td>10</td>
<td>y</td>
<td>FACW</td>
<td></td>
</tr>
</tbody>
</table>

Herb Stratum (Plot size: 5-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Hydrophytic Vegetation Indicators:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phalaris arundinacea</td>
<td>50</td>
<td>y</td>
<td>FACW</td>
<td>Rapid Test for Hydrophytic Vegetation</td>
</tr>
<tr>
<td>Solidago canadensis</td>
<td>5</td>
<td>N</td>
<td>FACW</td>
<td>Dominance Test >50%</td>
</tr>
<tr>
<td>Solidago odontia</td>
<td>2</td>
<td>N</td>
<td></td>
<td>Prevalence Index Is <3.0</td>
</tr>
<tr>
<td>Solidago gigantea</td>
<td>10</td>
<td>y</td>
<td>FACW</td>
<td>Morphological Adaptations (provide supporting data in remarks)</td>
</tr>
</tbody>
</table>

Woody Vine Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>distinctive veg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>measures - RCG 1/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>golden rod (con.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Common emergent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>spot picked for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>data:</td>
</tr>
</tbody>
</table>
Soils

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators).

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>Frequency</th>
<th>Type*</th>
<th>Loc*</th>
<th>Texture, Structure, Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>10YR 3/1</td>
<td>100</td>
<td>10YR 4/6</td>
<td>f</td>
<td>c</td>
<td>m</td>
<td>Silty Loam, silt loam</td>
</tr>
<tr>
<td>2-18</td>
<td>10YR 3/2</td>
<td>90</td>
<td>10YR 4/6</td>
<td></td>
<td>c</td>
<td>m</td>
<td>Some sand</td>
</tr>
<tr>
<td>18-20</td>
<td>10YR 3/3</td>
<td>95</td>
<td>10YR 4/6</td>
<td>f</td>
<td>c</td>
<td>m</td>
<td>Dry clay loam, silt loam</td>
</tr>
</tbody>
</table>

*Frequency: F=Few, MA=Moderately Abundant, C=Common
*Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains
*Loc=Location, PL=Pore Lining, M=Matrix

Hydric Soil Indicators

- Histosol (A1)
- Histic Epipedon (A2)
- Black Hist (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Dark Surface (S7)

- Polysulfide Below Surface (S8)
- Thin Dark Surface (S9)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)

Problematic Hydric Soil Indicators

- 2 cm Muck (A10)
- 5 cm Mucky Peat or Peat (S3)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Iron-Manganese Masses (F12)
- Pleistocene Floodplain Soils (F19)
- Mosaic Spodic (T8)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)
- Other (Explain in remarks)

Restrictive Layer (if observed)

Type: ________ Depth (inches): ________

Remarks

probably filled in August, clay bottom, ex. root zones
some % reduction.

Wetland Determination

Hydrophytic Vegetation Present? Yes No
Hydric Soil Present? Yes No
Wetland Hydrology Present? Yes No
Is this Sampling Point Within a Wetland? Yes No
Does Any Part of this Delineated Wetland/Stream Extend Past the Flagged Boundary? Yes No N/A
Is this Wetland Potentially Isolated? Yes No N/A
If yes, indicate classification
If yes, indicate wetland ID

US Army Corps of Engineers
Northcentral and Northeast Region - Interim Version
DATA FORM
RUTINE WETLAND DETERMINATION

Project Number: 60345076
Applicant: USDA

Town: Pembroke
County: Genesee
State: New York
Community: Upland (EMRZ)

Data Point ID (i.e. 2W@Wet G): UPL

Nearest Flag to Data Point: NE

Investigator(s): R. Runge

Landform: Hillside/Seep Toe of Slope Depressional Riparian

Landscape Position: Flat Undulating Sloping Convex Concave

Is the area a potential problem area? Yes No

Is the site significantly disturbed? Yes No

Approximate Slope (%): 25

Are climatic/hydrologic conditions on the site typical for this time of year? Yes No

Hydrology

Primary Indicators (min. - 1 required; check all that apply)
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A5)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Minal Mat or Crust (B4)
- Iron Deposits (B5)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)

Secondary Indicators (min. - 2 required)
- Water-Stained Leaves (B9)
- Aquatic Fauna (B13)
- Marl Deposits (B15)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain In Remarks)

Field Observations

Inundation Present? Yes No

Saturated Conditions? Yes No

Depth of Water (inches):

Depth to Sat. Soil (inches):

Depth to Water (inches):

N/A

Stream Characteristics

Stream type: Perennial

Morphology: Bank Width Gentle

Stream Gradient: Bed Rock

Substrate: Sand

Filter: No Flow

Perennial

Intermediate Stream Width Moderate

Water Depth: Sleep

Gizzard

Clay

Heavy

Adjacent Community Type:

Instream Conditions:
- Obscured Banks
- Deep Pools
- Overhanging Vegetation
- Well Defined Banks
- Riffles & Pools
- Vegetated Channel
- Eroded/Undercut Bank
- Other

Remarks

Upland area adjacent to Pem man of W1 (east). Canada goldenrod.

Area has dom. gray dogwood (herb.) & shrub.
Vegetation

Tree Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Dominance Test worksheet:
- Number of Dominant Species
 - That Are OBL, FACW, or FAC: (A)
- Total Number of Dominant Species Across All Strata: (B)
- Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)

For Prevalence Index worksheet:
- Total % Cover of:
 - OBL species: \(x_1 \)
 - FACW species: \(x_2 \)
 - FAC species: \(x_3 \)
 - FACU species: \(x_4 \)
 - UPL species: \(x_5 \)
- Column Totals: (A)
- Prevalence Index: \(B/A \)

Sapling/Shrub Stratum (Plot size: 15-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornus racemosa</td>
<td>15</td>
<td>FACU</td>
</tr>
</tbody>
</table>

For Hydrophytic Vegetation indicators:
- Rapid Test for Hydrophytic Vegetation
 - Dominance Test >60%
 - Prevalence Index is <30%
- Morphological Adaptations (provide supporting data in remarks)
 - Problematic Hydrophytic Vegetation (explain in remarks)
 - Indicators of wetland soil and wetland hydrology must be present, unless disturbed or problematic.

Herb Stratum (Plot size: 5-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soli dea congesta</td>
<td>30</td>
<td>FACU</td>
</tr>
<tr>
<td>Solidago altissima</td>
<td>10</td>
<td>FACW</td>
</tr>
<tr>
<td>Solidago odora</td>
<td>5</td>
<td>FACU</td>
</tr>
<tr>
<td>Phalaris canadensis</td>
<td>5</td>
<td>FACU</td>
</tr>
<tr>
<td>Daucus carota</td>
<td>5</td>
<td>FACW</td>
</tr>
<tr>
<td>Phleum pratense</td>
<td>5</td>
<td>FACU</td>
</tr>
<tr>
<td>Cornus racemosa</td>
<td>5</td>
<td>FACW</td>
</tr>
<tr>
<td>Asclepias syriaca</td>
<td>5</td>
<td>UPL</td>
</tr>
</tbody>
</table>

For Woody Vine Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDV</td>
<td>2</td>
<td>FACW</td>
</tr>
</tbody>
</table>

For Hydrophytic Vegetation indicators:
- Rapid Test for Hydrophytic Vegetation
 - Dominance Test >60%
 - Prevalence Index is <30%
- Morphological Adaptations (provide supporting data in remarks)
 - Problematic Hydrophytic Vegetation (explain in remarks)
 - Indicators of hydrophytic vegetation must be present, unless disturbed or problematic.

Remarks
- Lots of veg. debris on ground.
 - Upland from wetland basin.
Soils

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>Frequency</th>
<th>Type</th>
<th>Loc</th>
<th>Texture, Structure, Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td></td>
<td>1070 3/2</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Silty loam with roots</td>
</tr>
<tr>
<td>1-20</td>
<td></td>
<td>1070 3/3</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandy loam with few small gravel</td>
</tr>
</tbody>
</table>

*Frequency: F=Few, MA=Moderately Abundant, C=Common
*Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains
*Location: PL=Pore Lining, M=Matrix

Hydric Soil Indicators

- Histosol (A1)
- Historic Epipelen (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5)
- Depressed Below Dark Surface (A11)
- Dark surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S2)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Dark Surface (S7)

Problematic Hydric Soil Indicators

- Polyvalue Below Surface (S3)
- Thin Dark Surface (S9)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Redox Depressions (F8)

Restrictive Layer (If observed)

- Type:
- Depth (inches):

Hydric Soil Indicators

<table>
<thead>
<tr>
<th>Polyvalue Below Surface (S3)</th>
<th>Thin Dark Surface (S9)</th>
<th>Loamy Mucky Mineral (F1)</th>
<th>Loamy Gleyed Matrix (F2)</th>
<th>Depleted Matrix (F3)</th>
<th>Redox Dark Surface (F6)</th>
<th>Redox Depressions (F8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic.

Wetland Determination

- **Hydrophytic Vegetation Present?** Yes No
- **Hydric Soil Present?** Yes No
- **Wetland Hydrology Present?** Yes No
- **Is this Sampling Point Within a Wetland?** Yes No
- **Is the wetland mapped in the NWI?** Yes No
- **Is the wetland a mapped state wetland?** Yes No

Hydrologic Connectivity to Off-site Wetlands? Yes No N/A
Does Any Part of this Delineated Wetland/Stream Extend Past the Flagged Boundary? Yes No N/A
Is this Wetland Potentially Isolated? Yes No N/A

If yes, indicate classification

If yes, indicate wetland ID
DATA FORM
ROUTINE WETLAND DETERMINATION
Northcentral and Northeast Region Supplement

Project Number: 60345076
Applicant: USDA

Nearest Flag to Data Point: W2 (Ext)

Investigator(s): J. Lyons R. Pung

Landform: Hillside/Seep Toe of Slope Depressional Riparian

Landscape Position: Flat Undulating Sloping Convex Concave

Is the area a potential problem area? Yes No
Is the site significantly disturbed? Yes No

Approximate Slope (%): 1-4

Do climatic/hydrologic conditions on the site typical for this time of year? Yes No

Hydrology
Primary Indicators (min. 1 required; check all that apply)
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Depositions (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)
- Water-Stained Leaves (B9)
- Aquatic Fauna (B13)
- Mud Deposits (B15)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain in Remarks)

Secondary Indicators (min. 2 required)
- Surface Soil Cracks (B6)
- Drainage Patterns (B10)
- Moso Trim Lines (B16)
- Dry-Sasson Water Table (C2)
- Crayfish Burrows (C9)
- Saturation Visible on Aerial Imagery (C9)
- Stunted or Stressed Plants (D-1)
- Geomorphic Position (D2)
- Shallow Aquitard (C3)
- Microtopographic Relief (D4)
- FAC-Neutral Test (D5)

Field Observations
Inundation Present? Yes No
Saturated Conditions? Yes No

Depth of Water (inches): __18__
Depth to Soil (inches): __18__
Depth to Water (inches): __18__

Stream Characteristics
Stream type: Perennial
Morphology: Bank Width: Gentle
Stream Gradient: Bed Rock
Substrate: Sand
Flow: No Flow

Intermittent
Stream Width: Moderate
Water Depth: Sleep
Cobble
Clay

Adjacent Community Type: N/A

Instream Conditions:
- Obscured Banks
- Deep Pools
- Overhanging Vegetation
- Well Defined Banks
- Rifles & Pools
- Vegetated Channel
- Eroded/Underscut Bank
- Other

Remarks:
Wetland W2 was extended from the
land parcel to the West. It is a mix
of PEM (mostly) & PSS with a
line of small trom of willows.
<table>
<thead>
<tr>
<th>Tree Stratum (Plot size: 30-foot radius)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Dominance Test worksheet:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number of Dominant Species That Are OBL, FACW, or FAC: (A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Number of Dominant Species Across All Strata: (B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prevalence Index worksheet:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total % Cover of: Multiply by:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OBL species x 1 =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FACW species x 2 =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FAC species x 3 =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FACU species x 4 =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UPL species x 5 =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Column Totals: (A) (B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prevalence Index = B/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum (Plot size: 15-foot radius)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. x x 100</td>
</tr>
<tr>
<td>3 N FACW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herb Stratum (Plot size: 5-foot radius)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocreca sensibilis</td>
</tr>
<tr>
<td>Solidago odorum</td>
</tr>
<tr>
<td>Solidago gigantea</td>
</tr>
<tr>
<td>Scirpus operchi</td>
</tr>
<tr>
<td>Phalaris arundinacea</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Indicators:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid Test for Hydrophytic Vegetation</td>
</tr>
<tr>
<td>Dominance Test >50%</td>
</tr>
<tr>
<td>Prevalence Index is >50%</td>
</tr>
<tr>
<td>Morphological Adaptations (provide supporting data in remarks)</td>
</tr>
<tr>
<td>Problematic Hydrophytic Vegetation (explain in remarks)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definitions of Vegetation Strata:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.</td>
</tr>
<tr>
<td>Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.</td>
</tr>
<tr>
<td>Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.</td>
</tr>
<tr>
<td>Woody vines - All woody vines greater than 3.28 ft in height.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woody field cover grass</td>
</tr>
<tr>
<td>Wetland area is in small/low depressional area.</td>
</tr>
<tr>
<td>Veg. is thick/flush</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Woody Vine Stratum (Plot size: 30-foot radius)</th>
</tr>
</thead>
<tbody>
<tr>
<td>82 = Total Cover</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Point ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (207)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicant:</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>634 5076</td>
</tr>
</tbody>
</table>
Soils

Profile Description:
(Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>Frequency</th>
<th>Type</th>
<th>Loc</th>
<th>Texture, Structure, Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>10YR 7/2</td>
<td>100</td>
<td>2.5YR 4/6</td>
<td>f</td>
<td>c</td>
<td>m</td>
<td>Silty loam w/roots</td>
</tr>
<tr>
<td>1-16</td>
<td>10YR 7/2</td>
<td>80</td>
<td>10YR 5/4</td>
<td>f</td>
<td>c</td>
<td>m</td>
<td>Sandy loam</td>
</tr>
<tr>
<td>16-20</td>
<td>10YR 7/4</td>
<td>95</td>
<td>10YR 7/4</td>
<td>f</td>
<td>c</td>
<td>m</td>
<td>Clay (dry)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydric Soil Indicators</th>
<th>Problematic Hydric Soil Indicators</th>
<th>Restrictive Layer (if observed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type: ________________________</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth (inches):</td>
</tr>
</tbody>
</table>

Remarks
Soil is hydric but has main tilled, a homogensus structure more than likely from past plowing (e.g. activities), depleted clay layer in lower horizon.

Wetland Determination

- **Hydrophytic Vegetation Present?** Yes ☐ No ☑
- **Hydric Soil Present?** Yes ☐ No ☑
- **Wetland Hydrology Present?** Yes ☐ No ☑
- **Is this Sampling Point Within a Wetland?** Yes ☐ No ☑
- **Is the wetland mapped in the NWI?** Yes ☐ No ☑
- **Is the wetland a mapped state wetland?** Yes ☐ No ☑
- **Hydrologic Connectivity to Off-site Wetlands?** Yes ☐ No ☑ N/A
- **Does Any Part of this Delineated Wetland Stream Extend Past the Flagged Boundary?** Yes ☐ No ☑ N/A
- **Is this Wetland Potentially Isolated?** Yes ☐ No ☑ N/A

If yes, indicate classification ____________________________
If yes, indicate wetland ID ____________________________
DATA FORM
ROUTINE WETLAND DETERMINATION

AECOM
257 West Genesee Street
Suite 400
Buffalo, New York 14202

Project Number: 603450276

Applicant: USDA

Data Point ID (i.e. 2W@Wet. G): UP 2 (EAT)

Investigator(s): J. Lyons R. Runo

Landform: Hillside/Steep Toe of Slope Depressional Riparian

Landscape Position: Flat Undulating Slopinc Convex Concave

Is the area a potential problem area? Yes No

Is the site significantly disturbed? Yes No

Approximate Slope (%): 2-4

Are climatic/hydrologic conditions on the site typical for this time of year? Yes No

Do Normal Circumstances exist on site? Yes No

Hydrology

Primary Indicators (min. - 1 required; check all that apply)
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Stains (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Sediment Stains (B8)

Secondary Indicators (min. - 2 required)
- Water-Stained Leaves (B9)
- Aquatic Fauna (B13)
- Mott Deposits (B15)
- Hydrogen Sulfide Color (C1)
- Oxidized Rhizospheres on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain In Remarks)

Field Observations
Inundation Present? Yes No
Saturated Conditions? Yes No

Depth of Water (inches): __________
Depth to Sat. Soil (inches): __________
Depth to Water (inches): __________

Stream Characteristics

Stream Type: Perennial
Morphology: Bank Width
Stream Gradient: Bed Rock
Substrate: Sand
Flow: No Flow

Stream Type: Intermittent
Water Depth: Steep
Flow: Gentle

Adjacent Community Type: N/A

Instream Conditions:
- Obscured Banks
- Deep Pools
- Overhanging Vegetation
- Well Defined Banks
- Riffles & Pools
- Vegetated Channel
- Eroded/Undercut Bank
- Other

Remarks

upland area adjacent to W2. Up area is upste from wetland - (historiz as field?)
Difference & dom. veg. & lighten soils colors.
<table>
<thead>
<tr>
<th>Tree Stratum (Plot size: 30-foot radius)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Dominance Test worksheet: Number of Dominant Species That Are OBL, FACW, or FAC: (A)</th>
<th>Total Number of Dominant Species Across All Strata: (B)</th>
<th>Percent of Dominant Species That Are OBL, FACW, or FAC: (AB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Total Cover

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum (Plot size: 15-foot radius)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Dominance Test worksheet: Number of Dominant Species That Are OBL, FACW, or FAC: (A)</th>
<th>Total Number of Dominant Species Across All Strata: (B)</th>
<th>Percent of Dominant Species That Are OBL, FACW, or FAC: (AB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Total Cover

<table>
<thead>
<tr>
<th>Herb Stratum (Plot size: 5-foot radius)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Dominance Test >50%</th>
<th>Prevalence Index is <=3.0</th>
<th>Morphological Adaptations? (provide supporting data in remarks)</th>
<th>Problematic Hydrophytic Vegetation? (explain in remarks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Solidago canadensis</td>
<td>20</td>
<td>Y</td>
<td>FAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. S. odon</td>
<td>3</td>
<td>N</td>
<td>NL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. S. altissima</td>
<td>5</td>
<td>N</td>
<td>FAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Phalacis aquatilis</td>
<td>10</td>
<td>Y</td>
<td>FAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Daucus carota</td>
<td>7</td>
<td>Y</td>
<td>UPL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Asclepias syriaca</td>
<td>8</td>
<td>Y</td>
<td>UPL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Phleum praemus</td>
<td>10</td>
<td>Y</td>
<td>FAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Cornus racemosus</td>
<td>10</td>
<td>Y</td>
<td>FAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Total Cover

<table>
<thead>
<tr>
<th>Woody Vine Stratum (Plot size: 30-foot radius)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Dominance Test >50%</th>
<th>Prevalence Index is <=3.0</th>
<th>Morphological Adaptations? (provide supporting data in remarks)</th>
<th>Problematic Hydrophytic Vegetation? (explain in remarks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Total Cover

Hydrophytic Vegetation Indicators:
- Rapid Test for Hydrophytic Vegetation
- Dominance Test >50%
- Prevalence Index is <=3.0
- Morphological Adaptations? (provide supporting data in remarks)
- Problematic Hydrophytic Vegetation? (explain in remarks)
- Indicators of wetland soil and wetland hydrology must be present, unless disturbed or problematic.

Definitions of Vegetation Strata:
- Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
- Sapling/shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.
- Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
- Woody vine - All woody vines greater than 3.28 ft in height.

Remarks

Thick variety of veg. low brushes on this area all emergent.
Soils
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>Frequency</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>107R 3/3</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>Sandy loam with small few sand</td>
</tr>
</tbody>
</table>

1Frequency: F=Favorit, MA=Moderately Abundant, C=Common
2Type: C=Concentration, D=Deposition, RM=Reduced Matrix, CS=Covered or Coated Sand Grains
3Location: PL=Pore Lining, M=Matrix

Hydric Soil Indicators

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S6)
- Stripped Matrix (S8)
- Dark Surface (S7)

- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)

- 2 cm Muck (A10)
- Coast Prairie Redox (A16)
- 5 cm Mucky Peat or Peat (S3)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Iron-Manganese Masses (F12)
- Pedmont Floodplain Soils F19)
- Mesic Spodic (TA6)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)
- Other (Explain in Remarks)

Restrictive Layer (if observed)
Type: __________
Depth (inches): __________

Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic.

Remarks
Historic as field, light brown, colored soil, little roots

Wetland Determination
Hydrophytic Vegetation Present? Yes No
Hydric Soil Present? Yes No
Wetland Hydrology Present? Yes No
Is this Sampling Point Within a Wetland? Yes No

Hydrologic Connectivity to Off-site Wetlands? Yes No
Does Any Part of this Delineated Wetland/Stream Extend Past the Flagged Boundary? Yes No
Is this Wetland Potentially Isolated? Yes No

Is the wetland mapped in the NWI? Yes No
Is the wetland a mapped state wetland? Yes No

If yes, indicate classification __________
If yes, indicate wetland ID __________
DATA FORM
ROUTINE WETLAND DETERMINATION
Northcentral and Northeast Region Supplement
Project Number: 60345076
Applicant: US DVA
Data Point ID (i.e. 2W8@Wet. C): W3 (act)
Nearest Flag to Data Point:

Investigator(s): J. Lyons R. Runge
Landform: Hillside/Seep Toe of Slope Depressional Riparian
Landscape Position: Flat Undulating Sloping Convex Concave
Is the area a potential problem area? Yes No
Is the site significantly disturbed? Yes No
Approximate Slope (%): 2-4
Are climatic/hydrologic conditions on the site typical for this time of year? Yes No
Do Normal Circumstances exist on site? Yes No

Hydrology

Primary Indicators (min. - 1 required; check all that apply)
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Inundation Visible on Aerial Imagery (B7)
- Sparserly Vegetated Concave Surface (B8)
- Water-Stained Leaves (B9)
- Aquatic Fauna (B13)
- Marl Deposits (B15)
- Oxidized rhizospheres on living roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain In Remarks)

Secondary Indicators (min. - 2 required)
- Surface Soil Cracks (B6)
- Drainage Patterns (B10)
- Moss Trim Lines (B16)
- Dry-Season Water Table (C2)
- Claypan Silts (E1)
- Saturation Visible on Aerial Imagery (C9)
- Stunted or Stressed Plants (D-1)
- Geomorphic Position (D2)
- Shallow Aquifer (D3)
- Microtopographic Relief (D4)
- FAC-Neutral Test (D5)

Field Observations
Inundation Present? Yes No Depth of Water (inches):
Saturated Conditions? Yes No Depth to Sat. Soil (inches):

Stream Characteristics
Stream type: Perennial
Morphology: Bank Width Gentle
Stream Gradient: Bed Rock
Substrate: Sand
Flow: No Flow

Perennial

Intermittent
Stream Width Moderate
Water Depth Sleep

Adjacent Community Type:

Instream Conditions:
- Obscured Banks
- Well Defined Banks
- Eroded/Undercut Bank
- Deep Pools
- Riffles & Pools
- Overhanging Vegetation
- Vegetated Channel
- Other

Remarks
Emergent wetland ui small cattail component. Wetland basin is apparent from surrounding areas.
Vegetation

Tree Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th></th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dominance Test worksheet:
- Number of Dominant Species
 - That Are OBL, FACW, or FAC: ____(A)___
- Total Number of Dominant Species Across All Strata: ____(B)___
- Percent of Dominant Species
 - That Are OBL, FACW, or FAC: ____(A/B)___

Prevalence Index worksheet:
- Total % Cover of:
 - OBL species: ____(A)___
 - FACW species: ____(A)___
 - FAC species: ____(A)___
 - FACU species: ____(A)___
 - UPL species: ____(A)___
- Column Totals: ____(A)___
- Multiply by: ____(A)___
- Total Cover = ____(A)___
- Prevalence Index = B/A = ____(B)___

Sapling/Shrub Stratum (Plot size: 15-foot radius)

<table>
<thead>
<tr>
<th></th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Herb Stratum (Plot size: 5-foot radius)

<table>
<thead>
<tr>
<th></th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>30</td>
<td>Yes</td>
<td>FACW</td>
</tr>
<tr>
<td>2.</td>
<td>15</td>
<td>Yes</td>
<td>OBL</td>
</tr>
<tr>
<td>3.</td>
<td>10</td>
<td>Yes</td>
<td>OBL</td>
</tr>
<tr>
<td>4.</td>
<td>10</td>
<td>Yes</td>
<td>FACW</td>
</tr>
<tr>
<td>5.</td>
<td>5</td>
<td>No</td>
<td>FACW</td>
</tr>
</tbody>
</table>

Hydrophytic Vegetation Indicators:
- Rapid Test for Hydrophytic Vegetation
 - Dominance Test >50%
 - Prevalence Index ≤ 3.0*
 - Morphological Adaptations* (provide supporting data in remarks)
 - Problematic Hydrophytic Vegetation* (explain in remarks)

Definitions of Vegetation Strata:
- Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
- Sapling/Shrub - Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.
- Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
- Woody vines - All woody vines greater than 3.28 ft in height.

Woody Vine Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th></th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Cover = ____(A)___

Remarks:

Different vegetation components to this wetland

(i.e. monoculture of C.)
Project Number: 60345076
Applicant: USDA
Sampling Data: 26AUG205
Data Point ID: W3 (A)

Soil Map Unit:

Soils

Profile Description: (Describe the depth needed to document the indicator or confirm the absence of indicators).

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Color (moist)</th>
<th>%</th>
<th>Redux Features</th>
<th>Frequency</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>10%</td>
<td>100%</td>
<td></td>
<td></td>
<td>f</td>
<td>c</td>
<td>m</td>
</tr>
<tr>
<td>2-18</td>
<td>10%</td>
<td>90%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-30</td>
<td>7%</td>
<td>90%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Frequency: F = Few, MA = Moderately Abundant, C = Common
- Type: C = Concentration, D = Depletion, RM = Reduced Matrix, CS = Covered or Coated Sand Grains
- Location: PL = Pore Lining, M = Matrix

Hydric Soil Indicators

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S6)
- Stripped Matrix (S8)
- Dark Surface (S7)

Problematic Hydric Soil Indicators

- 2 cm Muck (A10)
- Coast Prairie Redox (A16)
- 5 cm Mucky Peat or Peat (S3)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Iron-Manganese Massee (F12)
- Piedmont Floodplain Soils (F19)
- Marine Spodic (T48)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)
- Other (Explain in remarks)

Hydric Soil Indicators

- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F7)
- Redox Depressions (F6)

Restrictive Layer (If observed)

- Type: __________
- Depth (inches): __________

Remarks

Clayish material in bottom horizon.

Wetland Determination

- Hydrophytic Vegetation Present? Yes
- Hydric Soil Present? Yes
- Wetland Hydrology Present? Yes
- Is this Sampling Point Within a Wetland? Yes
- Hydrologic Connectivity to Off-site Wetlands? Yes
- Does Any Part of this Delineated Wetland/Stream Extend Past the Flagged Boundary? Yes
- Is this Wetland Potentially Isolated? Yes
- Is the wetland mapped in the NWI? Yes
- Is the wetland a mapped state wetland? Yes

If yes, indicate classification: AK-15

US Army Corps of Engineers

Northeast and Northwest Region - Interim Version
AECOM
257 West Genesee Street
Suite 400
Buffalo, New York 14202

DATA FORM
ROUTINE WETLAND DETERMINATION
Northcentral and Northeast Region Supplement

Applicant: USDWA

Project Number: 60345076

Town: Penbrook
County: Genesee
State: New York
Community: Upland

Sampling Date: 26 Aug 2015

Data Point ID (i.e. 2W&3 Wet. G.): UP 3 (err)

Nearest Flag to Data Point:

Investigator(s): J. Lyons R. Rung

Landform: Hillside Slope Toe of Slope Depressional Riparian

Landscape Position: Flat Undulating Sloping Convex Concave

Are climatic/hydrologic conditions on the site typical for this time of year? Yes
No

Do Normal Circumstances exist on site? Yes
No

Hydrology

Primary Indicators (min. - 1 required; check all that apply)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)

Secondary Indicators (min. - 2 required)

- Water-Stained Liners (B9)
- Aquatic Fauna (B13)
- Muck Deposits (B15)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizosferes on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C8)
- Thin Muck Surface (C7)
- Other (Explain in Remarks)

Field Observations

Inundation Present? Yes
No

Saturated Conditions? Yes
No

Depth of Water (inches):

Depth to Sat. Soil (inches):

Depth to Water (inches):

Stream Characteristics

Stream type: Perennial

Morphology: Bank Width: Gentle

Stream Gradient: Moderate

Substrate: Bed Rock

Flow: No Flow

Intermittent Stream Width: Gentle

Water Depth: Silt

Flow: Gentle

Water Depth: Moderate

Flow: Heavy

Adjacent Community Type:

Instream Conditions:

- Obscured Banks
- Well Defined Banks
- Eroded/Undercut Bank

Deep Pools

Riffles & Pools

Overhanging Vegetation

Vegetated Channel

Other

Remarks

Upland area adj. to W3 (ext) - north.

Area is emergent to slushy & upglo from wetland area.
Vegetation

Tree Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>Absolute</th>
<th>Dominant</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Cover</td>
<td>Species?</td>
<td>Status</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Total Cover

Sapling/Shrub Stratum (Plot size: 15-foot radius)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Total Cover

Herb Stratum (Plot size: 5-foot radius)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Total Cover

Woody Vine Stratum (Plot size: 30-foot radius)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= Total Cover

Dominance Test worksheet:

- Number of Dominant Species That Are OBL, FAOW, or FAC: (A)
- Total Number of Dominant Species Across All Strata: (B)
- Percent of Dominant Species That Are OBL, FAOW, or FAC: (A/B)

Prevalence Index worksheet:

- Total % Cover of:
 - OBL species $\times 1 = $ (E)
 - FAOW species $\times 2 = $ (F)
 - FAC species $\times 3 = $ (G)
 - FACU species $\times 4 = $ (H)
 - UPL species $\times 5 = $ (I)
 - Column Totals: (A) \times (J) = (B)

Prevalence Index = $B/A = $

Hydrophytic Vegetation Indicators:

- Rapid Test for Hydrophytic Vegetation
- Dominance Test > 50
- Prevalence Index < 3.0
- Morphological Adaptations (provide supporting data in remarks)
- Problematic Hydrophytic Vegetation (explain in remarks)
- Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.

Definitions of Vegetation Strata:

- Tree - Woody plants 5 in. (13 cm) or more in diameter at breast height (DBH), regardless of height.
- Sapling shrub - Woody plants less than 5 in. DBH, and greater than 3.28 ft (1 m) tall.
- Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
- Woody vines - All woody vines greater than 3.28 ft in height.

Remarks

Upload veg. w/ some RC grass. all upslope.
Hydric Soil Indicators

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Dark Surface (S7)
- Polyvalue Below Surface (S6)
- Thin Dark Surface (S9)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Polyvalue Below Surface (S6)
- Thin Dark Surface (S9)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)

Problematic Hydric Soil Indicators

- 2 cm Muck (A10)
- Coast Prairie Redox (A16)
- 5 cm Mucky Peat or Peat (S3)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Iron-Manganese Masses (F12)
- Piedmont Floodplain Soils F19
- Mosaic Soils (TM)
- Rock Parent Material (F2)
- Very Shallow Dark Surface (TF12)
- Other (Explain in remarks)

Restrictive Layer (if observed)

- Type: Rock
- Depth (inches): 18

Hydrologic Connectivity to Off-site Wetlands? Yes No N/A

Does Any Part of this Delineated Wetland/Stream Extend Past The Flagged Boundary? Yes No N/A

Is this Wetland Potentially Isolated? Yes No N/A

Is the wetland mapped in the NWI? Yes No

Is the wetland mapped as a state wetland? Yes No

Hydrologic Connectivity to Off-site Wetlands? Yes No N/A

Does Any Part of this Delineated Wetland/Stream Extend Past The Flagged Boundary? Yes No N/A

Is this Wetland Potentially Isolated? Yes No N/A

Is the wetland mapped in the NWI? Yes No

Is the wetland mapped as a state wetland? Yes No

Remarks

Homogeneous soil profile with little activity.

(Old as soils.)
DATA FORM
ROUTINE WETLAND DETERMINATION
Northcentral and Northeast Region Supplement

Project Number: 60346076
Applicant: USDA

Data Point ID (i.e. 2W @ Wet. G.): W6
Nearest Flag to Data Point:

Investigator(s): J. Lyons R. Rung

Landform: Hillside/Seep Toe of Slope Depressional Riparian
Landscape Position: Flat Undulating Sloping Concave

Is the area a potential problem area? Yes No
Is the site significantly disturbed? Yes No
Approximate Slope (%): 1-3
Are climatic/hydrologic conditions on the site typical for this time of year? Yes No
Do Normal Circumstances exist on site? Yes No

Hydrology

Primary Indicators (min. 1 required; check all that apply)
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)
- Water-Stained Leaves (B9)
- Aquatic Fauna (B13)
- Mollusks (B15)
- Carbonaceous Sediment (C1)
- Oxidized Rhizospheres on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain in Remarks)

Secondary Indicators (min. 2 required)
- Surface Soil Cracks (B6)
- Drainage Patterns (B10)
- Moss Trim Lines (B16)
- Dry-Season Water Table (C2)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Stunted or Stressed Plants (D-1)
- Geomorphic Position (D2)
- Shallow Aquitard (D3)
- Microtopographic Relief (D4)
- FAC-Neutral Test (D5)

Field Observations
Inundation Present? Yes No
Saturated Conditions? Yes No
Depth of Water (inches):
Depth to Sat. Soil (inches):
Depth to Water (inches):

Stream Characteristics
Stream type: Perennial
Morphology: Bank Width: Gentle
Stream Gradient: Bed Rock
Substrate: Sand
Flow: No Flow
Intermediate Stream Width: Moderate
Water Depth: Boulder
Cobble
Gravel
Heavy

Adjacent Community Type: N/A

Instream Conditions:
- Obscured Banks
- Deep Pools
- Overhanging Vegetation
- Well Defined Banks
- Riffles & Pools
- Vegetated Channel
- Eroded/Undercut Bank
- Other

Remarks: We sنس a PEM, PSS, & PFO area. Forested component is hummocky
 mostly S. form in PEM. Access road
 cuts through middle.
Vegetation

Tree Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dominance Test worksheet:

- Number of Dominant Species: ___
- That Are OBL, FACW, or FAC: ___
- Total Number of Dominant Species Across All Strata: ___
- Percent of Dominant Species: ___ (A/B)
- That Are OBL, FACW, or FAC: ___ (A/B)

Prevalence Index worksheet:

- Total % Cover of: Multiply by:
 - OBL species: x 1 =
 - FACW species: x 2 =
 - FAC species: x 3 =
 - FACU species: x 4 =
 - UPL species: x 5 =
 - Column Totals: (A) =

- **Prevalence Index = B/A =**

** Sapling/Shrub Stratum (Plot size: 15-foot radius)**

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corylus americana</td>
<td>10</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>Alnus incana</td>
<td>10</td>
<td>Y</td>
<td>FACW</td>
</tr>
</tbody>
</table>

Herb Stratum (Plot size: 5-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oenothera biennis</td>
<td>20</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>Cornus sericea</td>
<td>5</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>Solidago gigantea</td>
<td>10</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>S. obtusata</td>
<td>3</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>S. canadensis</td>
<td>3</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>Rubus sp.</td>
<td>2</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>Phlox subulata</td>
<td>10</td>
<td>Y</td>
<td>FACW</td>
</tr>
</tbody>
</table>

Hydrophytic Vegetation Indicators:

- Rapid Test for Hydrophytic Vegetation
 - Dominance Test >50%
 - Prevalence Index is ≤3.0
- Morphological Adaptations* (provide supporting data in remarks)
- Problematic Hydrophytic Vegetation* (explain in remarks)

Definitions of Vegetation Strata:

- **Tree**: Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
- **Sapling/SHrub**: Woody plants less than 3 in. DBH and greater than 3.28 ft (1 m) tall.
- **Herb**: All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
- **Woody Vine**: All woody vines greater than 3.28 ft in height.

Remarks

- **Anomalies**
 - Plant community: VPO Component.
Soils

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>Frequency</th>
<th>Type</th>
<th>Loc</th>
<th>Texture, Structure, Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>10YR 7/1</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dry muck 5/4</td>
</tr>
<tr>
<td>2-14</td>
<td>10YR 7/2</td>
<td>95</td>
<td>10YR 7/2</td>
<td>8</td>
<td>o</td>
<td>c</td>
<td>sandy loam w/ root zone</td>
</tr>
<tr>
<td>14-20</td>
<td>10YR 7/1</td>
<td>90</td>
<td>10YR 7/1</td>
<td>f</td>
<td>c</td>
<td>m</td>
<td>depleted sandy 10am</td>
</tr>
</tbody>
</table>

Frequency: F=Few, MA=Moderately Abundant, C=Common
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains
Loc=Location: PL=Pore Lining, M-Matrix

Hydric Soil Indicators
- Histosol (A1)
- Histic Epipedon (A2)
- Black HSic (A3)
- Hydrogen Sulphate (A4)
- Stratified Layers (A5)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stipped Matrix (S6)
- Dark Surface (S7)

Problematic Hydric Soil Indicators
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)

Restrictive Layer (If observed)
- Type: __________
- Depth (inches): __________

Hydric Soil Indicators: Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic.

Remarks

a variety of soil areas - silty loamy with clay to clayish loam

Wetland Determination

Hydrophytic Vegetation Present? Yes No
Hydric Soil Present? Yes No
Wetland Hydrology Present? Yes No
Is this Sampling Point Within a Wetland? Yes No
Is the wetland mapped in the NWI? Yes No
Is the wetland a mapped state wetland? Yes No

Hydrologic Connectivity to Off-site Wetlands? Yes No N/A
Does Any Part of this Delineated Wetland/Stream Extend Past the Flagged Boundary? Yes No N/A
Is this Wetland Potentially Isolated? Yes No N/A

PF: 01.5/6

US Army Corps of Engineers
Northcentral and Northeast Region - Interim Version
DATA FORM
ROUTINE WETLAND DETERMINATION
Northeastern and North Central Regional Supplement
Project Number: 60345076
Applicant: USDA
Data Point ID (i.e. 2W@Wet. G): UP 6
Nearest Flag to Data Point:

Investigator(s): J. Lyons R. Runo

Is the area a potential problem area? Yes No
Is the site significantly disturbed? Yes No
Approximate Slope (%): 2-4

Landform: Hillside/Seep Toe of Slope Depressional Riparian

Landscape Position: Flat Undulating Sloping Convex Concave
Are climatic/hydrologic conditions on the site typical for this time of year? Yes No
Do Normal Circumstances exist on site? Yes No

Hydrology
Primary Indicators (min. - 1 required; check all that apply)
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1)
- Sediment Deposits (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)
- Water-Stained Leaves (B9)
- Aquatic Fauna (B13)
- Mott Deposits (B15)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain in Remarks)

Secondary Indicators (min. - 2 required)
- Surface Soil Cracks (B6)
- Drainage Patterns (B10)
- Moss Trim Lines (B16)
- Dry-Season Water Table (C2)
- Grayfish Burrows (C9)
- Saturation Visible on Aerial Imagery (C9)
- Stunted or Stressed Plants (D-1)
- Geomorphic Position (D2)
- Shallow Aquitard (D3)
- Microtopographic Relief (D4)
- FAC-Neutral Test (D5)

Field Observations
Inundation Present? Yes No X
Saturated Conditions? Yes No X
Depth of Water (inches):
Depth to Sat. Soil (inches):
Depth to Water (inches):

Stream Characteristics
Stream type: Perennial
Morphology: Bank Width Gentle
Stream Gradient: Steep
Substrate: Bed Rock Sand
Flow: No Flow
Intermittent Stream Width Moderate
Water Depth Steep
Cobble Gravel

Adjacent Community Type: N/A

Instream Conditions:
- Obscured Banks
- Deep Pools
- Overhanging Vegetation
- Well Defined Banks
- Riffles & Pools
- Vegetated Channel
- Eroded/Undisturbed Bank
- Other

Remarks:
Upland area adjacent to W6 - slightly elevated from wetland basin.
Upland areas include:
Emergent shrubs forest.
Vegetation

Tree Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Dominance Test worksheet:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number of Dominant Species</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>That Are OBL, FACW, or FAC:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Number of Dominant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Species Across All Strata:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Percent of Dominant Species</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>That Are OBL, FACW, or FAC:</td>
</tr>
</tbody>
</table>

Sapling/Shrub Stratum (Plot size: 15-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Prevalence Index worksheet:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total % Cover of:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Multiply by:</td>
</tr>
<tr>
<td>OBL species</td>
<td>x 1 =</td>
<td>FACW species</td>
<td>x 2 =</td>
<td></td>
</tr>
<tr>
<td>FAC species</td>
<td>x 3 =</td>
<td>FACU species</td>
<td>x 4 =</td>
<td></td>
</tr>
<tr>
<td>UPL species</td>
<td>x 5 =</td>
<td>Column Totals:</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Prevalence Index = B/A =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Herb Stratum (Plot size: 5-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Hydrophytic Vegetation Indicators:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solidago canadensis</td>
<td>25</td>
<td>Y</td>
<td>FAC</td>
<td>Rapid Test for Hydrophytic Vegetation</td>
</tr>
<tr>
<td>G. odora</td>
<td>5</td>
<td>N</td>
<td>N/L</td>
<td>Dominance Test >50%</td>
</tr>
<tr>
<td>Phalaris arundinacea</td>
<td>5</td>
<td>N</td>
<td>FAC</td>
<td>Prevalence Index ≤ 3.0'</td>
</tr>
<tr>
<td>Dausus carlyi</td>
<td>10</td>
<td>Y</td>
<td>UPL</td>
<td>Morphological Adaptors (provide supporting data in remarks)</td>
</tr>
<tr>
<td>Phleum pratense</td>
<td>15</td>
<td>Y</td>
<td>FAC</td>
<td>Problematic Hydrophytic Vegetation (explain in remarks)</td>
</tr>
<tr>
<td>Trifolium spp</td>
<td>5</td>
<td>N</td>
<td>FAC</td>
<td>Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.</td>
</tr>
<tr>
<td>Taraxacum officinale</td>
<td>5</td>
<td>N</td>
<td>FAC</td>
<td>Definitions of Vegetation Strata:</td>
</tr>
</tbody>
</table>

Woody Vine Stratum (Plot size: 30-foot radius)

<table>
<thead>
<tr>
<th>Species</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Forested section has a quaking aspen canopy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Evergreen picked for data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>area has been mowed recently.</td>
</tr>
</tbody>
</table>
Project Number: 60345076
Applicant: USDVA

Soil Map Unit: CaA

Soils
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators).

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>Frequency</th>
<th>Type</th>
<th>Loc</th>
<th>Texture, Structure, Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>102 3/3</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sandy loam/loam roots</td>
</tr>
<tr>
<td>2-18</td>
<td>102 7/3</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sandy loam/loam/loam</td>
</tr>
</tbody>
</table>

Frequency: F=Few, MA=Moderately Abundant, C=Common
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains
Loc: PL=Pore Lining, M=Matrix

Hydric Soil Indicators
- Histosol (A1)
- Histic Epipedon (A2)
- Black Hist (A3)
- Hydrogen Sulphide (A4)
- Stratified Layers (A5)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Dark Surface (S7)

Polyvalue Below Surface (S8)
Thin Dark Surface (S9)
Loamy Mucky Mineral (F1)
Loamy Gleyed Matrix (F2)
Depleted Matrix (F3)
Redox Dark Surface (F6)
Redox Depression (F8)
Polyvalue Below Surface (F9)

Problematic Hydric Soil Indicators
- 2 cm Muck (A10)
- Coastal Prairie Redox (A15)
- 5 cm Mucky Peat or Peat (S3)
- Dark Surface (S7)
- Polyvalue Below Surface (S8)
- Thin Dark Surface (S9)
- Iron-Manganese Masses (F12)
- Mesic Floodplain Soils (F19)
- Mottled Spodic (TA6)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)
- Other (Explain in remarks)

Restrictive Layer (if observed)
Type: Rock/gravel
Depth (inches): 18

Indicators of hydric vegetation and wetland hydrology must be present, unless disturbed or problematic.

Remarks
Soil colors are lighter with some small gravel. May indicate past plowing/filling activities (horizon mixing).

Wetland Determination
- Hydrophytic Vegetation Present? Yes □ No □
- Hydric Soil Present? Yes □ No □
- Wetland Hydrology Present? Yes □ No □
- Is this Sampling Point Within a Wetland? Yes □ No □
- Is the wetland mapped in the NWI? Yes □ No □
- Is the wetland a mapped state wetland? Yes □ No □
- Hydrologic Connectivity to Off-site Wetlands? Yes □ No □
- Does Any Part of this Delineated Wetland Stream Exceed Past the Filled Boundary? Yes □ No □
- Is this Wetland Potentially Isolated? Yes □ No □

If yes, indicate classification if yes, indicate wetland ID.
DATA FORM

ROUTINE WETLAND DETERMINATION

Northcentral and Northeast Regional Supplement

- **Applicant:** US DVA
- **Data Point ID (i.e. 2W @ Wet. G):** S-1
- **Project Number:** 103-48026
- **Investigator(s):** J. Lyons, R. Runo
- **Landform:** Hillside/Seep, Toe of Slope, Riparian
- **Landscape Position:** Flat, Undulating, Sloping, Convex, Concave
- **Are climatic/hydrologic conditions on the site typical for this time of year?** Yes
- **Do Normal Circumstances exist on site?** Yes
- **Hydrology:** Drainage Swale For 46. Lands.

Primary Indicators (min. - 1 required; check all that apply):
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Levels (B1)
- Sediment Drippings (B2)
- Drift Deposits (B3)
- Algal Mat or Crust (B4)
- Iron Deposits (B5)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)
- Water-Stained Leaves (B9)
- Aquatic Fauna (B13)
- Matted Deposits (B15)
- Hydrogen Sulfide Odor (B17)
- Oxidized Rhizospheres on Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)
- Other (Explain in Remarks)

Secondary Indicators (min. - 2 required):
- Surface Soil Cracks (B6)
- Drainage Patterns (B10)
- Mois Trim Lines (B16)
- Dry-Season Water Table (C2)
- Clayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Stunted or Stressed Plants (D-1)
- Geomorphic Position (D2)
- Shallow Aquifer (D3)
- Microtopographic Relief (D4)
- FAC-Neutral Test (D5)

Field Observations:
- Inundation Present? Yes, No
- Saturated Conditions? Yes, No
- Depth of Water (inches): 1-2
- Depth to Sat. Soil (inches): 0-12

Stream Characteristics:
- **Stream type:** Perennial
- **Morphology:** Bank Width: 3-12, Water Depth: 0-10
- **Stream Gradient:** Bed Rock, Gentle
- **Substrate:** Boulder, Silt
- **Flow:** No Flow, Gentle
- **Adjacent Community Type:**
 - Obscured Banks
 - Well Defined Banks
 - Eroded/Undercut Bank

Instream Conditions:
- Deep Pools, Riffles & Pools, Overhanging Vegetation, Vegetated Channel

Remarks:
Most soils under mostly dry channel - seasonally flowing during snow/ice melt & heavy rain events. Most likely connected to a field 'drain tile'. Man-made drainage features connect to drainage swales in the West.

'b is unnamed trib to TONAWANDA CREEK